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Vortex velocity pair correlations
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The vortex velocity probability distribution for two distinct vortices is determined for the case of phase-
ordering kinetics in systems with point defects. Tievector model driven by time-dependent Ginzburg-
Landau dynamics for a nonconserved order parameter is considered. The description includes the effects of
other vortices and order-parameter fluctuations. At short distances the most probable configuration is that a
vortex-antivortex pair has only a nonzero relative velocity that is inversely proportional to the distance between
them. The coefficient of proportionality is determined explicifi$1063-651X97)08909-3
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I. INTRODUCTION G =Gk, @
It seems plausible that much of the structure one sees ifioreover, there is a definite nonzero value 66t v 4, for a

the phase ordering of many materigls2] can be associated gjven value ofx. These most probable values are given as a

with the evolution and correlation among defef@$such as  function of x in Fig. 1. The most striking feature of these

vortices, monopoles, and disclinations. These topologicallyesults is that for smakt the most probable velocity goes as
robust objects grow out of the frustration suffered by a sys-

tem with a continuous symmetry that is thermodynamically K

driven to align in a broken symmetry state. In the case of the Umax~ R 2
n-vector model with the number of componenty) (of the

order parameter equal to the spatial dimensionalify gne  whereR is the unscaled separation between the vortices and
has point defects that are vortices o2 and monopoles x=2.19 in dimensionless units defined below. The result
for n=3. Because of the conservation of topological chargegiving v .« inversely proportional tdR is consistent with

the ordering in these systems is through the charge consereverdamped dynamics where the relative velocity of the two
ing process of vortex-antivortex annihilation. Topological vortices is proportional to the force, which in turn is the
constraints render the ordering in such systems to be largelerivative of a potential that is logarithmic in the separation
independent of the microscopic details of the material. In thiglistance. Thus these most probable results are consistent
paper the f0||owing question is addressed: What is the prob\Nlth the short-distance behavior being dominated by the an-
ability, given a vortex at positiorrfl with velocity 51a that nihilation of vortex-antivortex pairs. From previous wd

e S -, we know that there is low probability of finding like-signed
one will find a vortex at positiorr, with velocity v,?  \orices at short distances. Thus our results giving the veloc-

Clearly, in answering this question we obtain a tremendousy as a function of separation should be interpreted in terms

amount of information about the dynamics of vortices.  of annihilating vortex-antivortex pairs. The results for same-
The calculation of the two-vortex velocity probability dis-

tribution is a very involved process. In principle, one could

probe vortex dynamics by applying a force. Unfortunately, in 28 ' ' '

neutral systems it is very difficult to couple directly to the 20 b i

vortices. The two-vortex velocity probability distribution

serves this purpose by looking at the motion of one vortex in

the fixed presence of another vortex a known distance away. e |
The physical results of this calculation, carried out in de-

tail for n=d=2, are relatively simple to state. The appropri- ror 1

ate probability distribution is a function only of the scaled

velocitiesﬁi=5i /v for i=1 or 2 and the scaled separation o5 i

x=(r;—r,)/L(t). HereL(t) is the characteristic length in oo , , .

the problem, which grows with timeafter a quench as"? o 1 2 3 4

in the present caspt] and drives the scaling behavift] T

found in the problem. The characteristic velocity defined

carefully below, is inversely proportional tb(t). For a FIG. 1. Most probable scaled velocity of vortex 2 multiplied by

given scaled separation between two chosen vortices, the the magnitude of the scaled distance of separation
most probable configuration corresponds, as expected, to@=x.u(2)L/T'c versusx. This velocity is directed along, the line
state with zero total momentum and a nonzero relative moeonnecting the two tagged vortices. The most probable velocity of
mentum only along the axis connecting the vortices vortex 1 is equal and opposite to that of vortex 2.
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30 , : : function f(x) undetermined. Liu and Mazenko assumed that
one could usé(x) determined from a treatment of the order-
25 r 7 parameter dynamicaway from the defect cores

The charged orsigned vortex autocorrelation function
does not separate out all of the desired information since it

P s} . mixes the correlations between like- and unlike-signed vor-
tices. It is not difficult to introduce aansignedvortex auto-

10 - 7 correlation function. Between the signed and unsigned auto-

5o L | correlation functions one can construct linear combinations

) that give the vortex-vortex and vortex-antivortex correlation

0.0 ) ! functions. Unfortunately, for technical reasons it is more dif-

-2 0 2 4 6 8 ficult to determine the uncharged autocorrelation function.

U Only recently have these difficulties been overcome by Ma-

zenko and Wickharfs]. They found the results, expected on

FIG. 2. Probability distribution(unnormalizedl for the scaled physical grounds, that there is a depletion zone at short dis-
longitudinal velocity u=x-u(2)L/Tc=—x-u(1)L/I'c in the tances for the vortex-vortex correlation function indicating
small-scaled-distance limit. The peak in this curve gives the repulsion. Simulationf9] and experimentfl0] also show a
smallx limit of the quantity plotted in Fig. 1. depletion zone at short distances for like-signed defects. This

is expected on physical grounds since like-signed defects re-

signed vortices can also be carried out, but is considerablpel one another. There is a clear discrepancy between theory
more involved, as discussed below. and simulation results at short-scaled distances. The theory

The work here builds on the work in Rg6], where the shows a monotonic behavior as the separation distance goes
single-vortex velocity distribution was determined. As in theto zero. The simulation, however, shows a maximum at short
single-vortex case, there are significant widths associateseparation distances and then falls rapidly to zero. The deple-
with these most probable results. The widths come abouion zone seen in this case in the simulations is harder to
because of the existence of other vortices as well as fluctuamnderstand physically since the pair is attractive and headed
tions in the order-parameter field. There are, as shown in Figoward annihilation. While the theory satisfies the sum rule
2, significant widths in the probabilities due to the presencemplied by topological charge conservation, it does not ap-
of other vortices and fluctuations in the order-parametepear that this general constraint is satisfied by the simula-
field. For example, as— 0, while the most probable relative tions. It appears that the short-distance behavior in the simu-
velocity is 4.38R, the half-width at half maximum for this lations is contaminated by the choice of a vortex core
guantity, in these same units, is 2.B8An the large separa- distance that is comparable to distances associated with the
tion limit the probabilities become, as expected, uncorrelatedinphysical depletion zone.
and each has the distribution of velocities found previously It seems clear that it would be desirable to supplement
[6] for a single vortex. this information on the spatial correlation of vortices with

The analysis here is built upon previous work on the or-information concerning vortex velocities. It was recently
dering kinetic ofO(n) symmetric systems. The best avail- shown by the present authi@] that one could write down an
able theorie$2] for the order parameter correlation function explicit expression for the velocities associated with point
were built up in the early 1990s and have led to the belietlefects in terms of the order-parameter field. A key ingredi-
that we have a fairly good understanding of how to calculateent in this development is the identification of a continuity
the associated scaling function. It also has become clear theguation satisfied by the signed or charged vortex density.
the order-parameter correlation function or structure factor id his continuity equation gives a fundamental expression for
a rather structureless quantity that does not give a great deapnservation of topological charge in the system. Using the
of direct information about the underlying disordering Gaussian closure assumption, one can determine the single-
agents. This led Liu and Mazenk@] to look directly at the  vortex velocity distributionP[v,]. The most interesting
correlations between defects in the scaling regime. The keghysical result is that there is a large velocity tail that was
different element in this work, as discussed in some detaiinterpreted there as arising from the high velocities in the
below, was the realization that the positions of the vorticedate stages of vortex-antivortex annihilation. Brgh] has
could be labeled by the zeros of the order parameter fieldised scaling arguments to obtain the same large velocity tail.
which could in turn be mapped onto the zeros of an auxiliaryThe existence of these large velocities will be supported by
field m(x,t). They were able to show, following work by the calculation carried out here.
Halperin [8], how one could write explicit expressions for ~ One common and concerning element in the calculations
the signed and unsigned vortex densities in terms of the auof defect correlation functions and defect velocity distribu-

iliary field m(r,t). This then avoids the technically defeating tiqns is the.requirement that'the auxiliary. field scaled corre-
step normally encountered, which requires one to identify thdation functionf(x) be analytic as a function of for short
vortex positions. scaled distances. For example, the fourth-order agrad|ent
The signed vortex density correlation function was deter{ — V3f(x)]|x=o enters naturally into the analysis Bf{v,].
mined analytically in Ref[7] in terms of the variance of the The need for analyticity irx for f(x) is not naturally con-
auxiliary field under the assumption the auxiliary field is sistent with the simplest self-consistent analysig (4) fol-
Gaussian. This calculation left the auxiliary field correlationlowing a treatment of the order-parameter correlation func-
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tion. Mazenko and Wickharil2] recently showed that one spacing between defects. In this scaling regime the order-
can construct the theory so thd) is analytic inx for small ~ parameter correlation function has a universal equal-time
X, but this was at the expense of making the properties of thecaling form
order-parameter correlation function wofde).

The tension between usmg_the order-parameter dyn_amlcs C(12=((1)- §(2))= Y2 F(x), (6)
to determinef(x) and the requirement thdt{x) be analytic
in order to treat defect dynamics has been, to a degree, re- . . - .
lieved by the very recent work of Mazenko and Wickhamv;/]hered‘/’0 "j’jthﬁ mag;\ltudep—|zp| Orf] thehordher %arame_ter mh
[14]. They used the recently proposed continuity equation fo} e ordered phase. Here we use the short an ngtanon where
topological charge to derive the equation satisfied by thtﬂ;L d:enotfas ,ty). The scaledmlengthx is defined as
auxiliary field correlation function under the circumstancesX=(r1—r2)/L(t), where L(t)~t** for the nonconserved
that the field is constrained to be near a defect core. Agodels considered here. _ _
discussed briefly in Sec. Ill C of this paper, they find the In previous work on the order parameter scaling furlctlon
clean result that the auxiliary field correlation function deter-it was important to make a mapping of the order paramegter
mined in this manner satisfies a linear equation. This result ignto an auxi“ary fie|d‘ﬁ with the key requirement thaﬂ_way
self-consistent with the assumption that the auxiliary field isfrom defect cores
Gaussian. The solution of the associated linear equation has
the Ohta-Jasnow-KawasalDJK) [15] form J/= o @

— A (12)x?
f)=e ' ©® for the lowest-energy defects having unit topological charge.

which is clearly analytic in the smak+egime. They argue in  Physically, one expects thaearthe defect cores

Ref. [14] that the use of the Gaussian assumption in deter- R R L

mining defect dynamics, such &v ), has a stronger fun- g=am+b(m)’m+- .. (8)
damental justification than in the case of the determination of

the order-parameter correlation function. In the calculation ofor charge+ 1 defects where andb are constants. In the
the two-vortex velocity probability distribution presented theory for the order-parameter correlations it is prop€ry
here it is assumed that the order parameter field can be réat is important. In the theory of defect motion, as presented
placed by a Gaussian field in those portions of space nearlgre, it is property(8) that is important. In this paper only
vortex core and the associated auxiliary field correlatiorproperty(8) enters into the analysis since we always work

function is of the OJK form. near the defect cores. To complete the definition of the
model one must specify the form of the probability distribu-
Il. ORDER-PARAMETER DYNAMICS tion for the auxiliary fieldn. The simplest choice is a Gauss-

The system studied here has a defect dynamics generat.éad1 probability distribution form with
by the time-dependent Ginzburg-Landau model satisfied by a

- - m,(1)m,(2))=48,,Co(12). 9
nonconserveth-component vector order parameig(r ,t): (m,(1)m,(2))=38,,1Co(12) ©
9 SF The system is assumed to be statistically isotropic and ho-
L =K=-T—+ ;, (4) mogeneous s€&€,(12) is invariant under interchange of its
Jt oy spatial indices. In the scaling regime at equal times

. L . ) ) (ty=t,=t) we introduce the auxiliary field autocorrelation
wherel is a kinetic coefficient ané is a Ginzburg-Landau  f,nction mentioned in the Introduction

effective free energy assumed to be of the form

c _ . R f(X)=Co(rt,rat)/So(t), (10)

F=fddr(§(w>2+V(|wl)), 5

and Sy(t)=Cy(11) grows asL?(t) with time after the
wherec>0 and the potentidV is assumed to be of tH@(n) quench.
symmetric degenerate double-well form. Since only these
properties ofV will be important in what follows we need Il. TOPOLOGICAL DEFECTS
not be more specific in our choice for[16]. 7 is a thermal
noise that is related td' by a fluctuation-dissipation theo-
rem. We assume that the quench is from a high temperature It has been emphasized in R¢f] that the signed or
(T,>T.), where the system is disordered to zero temperatureharged point i=d) defect density can be written in the
where the noise can be set to zetp=(0). It is believed that form
our final results are independent of the exact nature of the - -
initial state, provided it is a disordered state. p(RO=56HRO)D(RL), 1D

It is well established that for late times following a

quench from the disordered to the ordered phase the dynarhere the Jacobian obtained with the change of variables
ics obey scaling and the system can be described in terms friom the set of vortex positions to the zeros of the figlds
a single growing length.(t), which is characteristic of the defined by

A. Densities



2760 GENE F. MAZENKO 56

This form for the velocity field is used inside expressions
DRO= 5 €y iy i€y vy gV g ¥y multiplied by the vortex locating function.
Xvﬂzllfvz' : 'V,Lnl//y ' (12 C. Use of topological charge conservation to determine
the auxiliary field correlation function

Wheree“lvﬂz ----- n 'S, then—d|men3|onal.fullly ant.|s3./mm.etr|c In previous work[17,18 a rather successful scheme has
tensor and summation over repeated indices is implied. Thgeen developed for evaluating the order-parameter correla-
key point is that the zeros of the order parametdocate the  tion function /(x) and in turn the auxiliary field correlation
positions of the vortices. The unsigned densi§R,t) is  function f(x). As indicated in the Introduction, this leads to
given by the problem that the auxiliary field correlation function is
. . rendered nonanalytic as a functiomofor smallx. Mazenko
n(R,t)=8(4(R,1))|D(R,1)|. (13)  and Wickham[14] have shown recently that this problem
) o can be addressed in a different way. Rather than using the
The charged vortex correlation function is given by order-parameter equation of motion to determine order-
arameter correlation function they used the continuity equa-
Cop(RO=(p(R)P(01), (14) 'I[Dion for topological charge to det)érmine the auxiliarill figld
correlation function. As in the rest of this paper, we use the

while the unsigned vortex correlation function is given by . .. - -
fact that in quantities such asandv, we can replacg—m

Con(R,1)=(n(R,t)n(0,1)). (15) everywhere. Then we can determifix) by satisfying
It is shown in Ref.[5] that the vortex-vortex and vortex- ﬂ Do(2)Y=V8 (S((1NI2 (1) (2
antivortex correlation functions can be expressed in terms of <9t<p( )p(2)) =V {8W(1NI (Dp(2))

C,, andC,,. C,, was evaluated in Ref7] using the Gauss- 8 . @
ian closure approximation. As shown in RES), the evalu- + Vo p(1)8(4(2))I5"(2))  (20)
ation of C,,, in this same approximation is technically much .
more difficult than the calculation o€,, because of the under the assumption that is a Gaussian field. The calcu-
absolute value sign in the definition of the unsigned defectation of the left-hand side of Eq20) amounts to the evalu-
densityn. ation ofC,,. This calculation was carried out in R¢7] and

is straightforward sinceC,, factorizes into a product of

B. Conservation of topological charge Gaussian averages that can be evaluated using standard

methods. The calculation of the average oﬂgzr) can be
organized in a similar fashion. In the scaling regime, after an
impressive set of cancellations, one finds the rather simple

It was shown in Ref[6] that the charged vortex density
satisfies the continuity equation

Ip result that
LI 7 1K)
0 = Vel 8(hIE, (16) <2
—uxf'=V2f+n—orf, (21)
where o
1 where
(K)—
a (n_1)| ea,,uz ..... /"ne”l"’z ..... VnKVl
S<2>=i<<vfn>2> (22)
XV, Vo ¥y a7 n2 '
A key point here is that" is multiplied by the vortex Sy=oL2, 23)
locating 6 function. This means that one can repld€en .
J®) by the part ofK that does not vanish ag—0. Thus, in ~ @nd we introduce the constant
the case of a nonconserved order parameter one can replace )
I in th tinuit tion b LL
5 in the continuity equation by = _ (24)
2l'c
Jo_ _T¢ V2 _ _ . . .
B (n—1) By, ... pn€viva. AN This equation forf is linear and has the simple solution of
the OJK form
XV b, Vo ¥y (19 ,
f=e (W2X° (25

Because of the standard form of the continuity equatid,
it is clear that one can identify the vortex velocity field as with the conditions

3 d ,
Vo=~ (19 n7=(—V f)lx=0=np. (26)



56 VORTEX VELOCITY PAIR CORRELATIONS 2761

For simplicity we setu=1, which amounts to choosing n R R
L(t)=2+I'ct and results in the result fdrgiven by Eq.(3). f d"b(i) H . d§;(i)Wi[§,b]= S(m(i)). (33
mv=

D. Vortex velocities . . . .
Using this result, we can insert the factorsW#fW, into the

expression forP[v;,v,] and use the properties of th@

function to replace all gradients and Laplacians?nfvith the
associated values constrained by the multiplyéghuunction
27) to obtain

As an important application of the resi9) for the vor-

tex velocity fieldv consider the velocity probability distribu-
tion function defined by

NeP(v1)=(nd(v1—0)),

2 n
wherev  is a reference velocity; is given bz Eq(19), nis CnnP[Jlaljz]:f H [d”b(i) IT dé” (i) D))
the unsigned defect density, ang=(n). P[v,] was found =1 mv=1
in Ref.[6] to be given by

x6<v?—J(ai).ﬁ(i)))}csz(g,t?),

r n 1
- 2" 1
POV o [y e 29 where
where the characteristic velocity is defined by Ga(&,b)=(Wa[£,b]W,[£,b]), (34)
— S,
2_ Tc 2_' 29 _ 1 vy LV vn
vi=e) (29 D= €y sy, sy, b2 £,
2 i (39
whereS?) is given by Eq.(22) and
— 1 N (nS<2))2 (2) T
Sy=—((V’m)?)— : (30) e g (&), b(1)
i),b(i)=———, 36
n So v (&(1),b(i)) DED) (36)
Using the OJK form for f(x), we obtain _
S@=¢,S,=do/Tct, andv 2=dI'c/t. with
IV. CALCULATION OF THE TWO-VORTEX VELOCITY J(z)(g(i) B(I))I c
PROBABILITY DISTRIBUTION « ’ (n—1)1 CamgomnErpwgr = n
A. General development xb, (i )gzzz(i), . ,g:r:](i ). (37)

The main quantity of interest in this paper is the two-

velocity correlation function defined b .
y y The Gaussian average giviigy(£,b) is worked out explic-

Cnnp[l;l 52]=(n(l)5(51—J(l))n(2)5(52—5(2))> itly in the Appendix. In the course of this calculation it is
(32) required that one make a change of variables fegii) to a
) ) R new sett) (i) given by

where v, and v, are external labels while the(i), for
|=.1,2,. is expressed m»terﬁms. of the o'rder-parameter field §;(i)=f?ﬁtg(i) (39)
Y(i) via Eq. (19). C,,P[v1,v2] is normalized such that the
integrals overv; andv, give the unsigned defect density ;a6 is an orthonormal matrix with the additional property
correlation functionC,,,, which was determined previously 81y A A . .
in Ref. [5]. that R,’=R,, whereR, is t[le unit vector pointing from
vortex 2 to vortex 1. Since dé®) =1 the change of variables

The first step in the evaluation &¥[v;,v,] is to notice VOort
from £ to t is simple,

that we can replace by m in the expressions for the un-
signed vortex density and the velocity. Next we need to show

that it can be expressed in terms of an average over a reduced de’(iy= dt’ (i 39
probability distribution. In the Appendix we introduce the VEI,,' €ull) l;lj wl1) (39
fields

and

Wi[¢,b]=8(m(i))s(b(i)— v2m(i))

n . D(£()))=D(t())). (40)
X Hl S H-vPm,i), (32

V= The one place in this change of variables where one must

which have the normalization show care is for the curredf?. We have
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..........

I'c RS o
(f(') b(i))= (n—1)! €auy, . g€y, anyl(|)RM§t322(|)"'Rﬂ:tﬁ:(l)

- e RS Fn b, (DA (i 41
_me‘wz ..... un R R € by g Vl(l)tﬁz(l), ""tﬂn(l)' (41
Clearly, if we multiply this expression b[vtﬁl and sum ovekr we obtain
RP1I@) (&(i),b(i))= = 1)| R, ... Mnﬁzﬁi, . ,ﬁeﬁ:evm _____ b, (Dt2(1), ... t(0)
I'c A S\ Vo Ve ) (47N Brs
= m(deﬂ)eﬁl,ﬁz ..... ,Bnevl,vz ..... vnbvl(l)tlgz(l)a e 1t’3r:](|):‘]a (t(l)yb(l)) (42)
|
Multiplying by RP, summing ovelBs, and using the ortho- ) I'c 1
. r LD . Nya(l):_ Dz,u ,uEVV“‘V
normality of the matrixR gives (n—=1)! D(t(i)) "2 #n""¥2 " n
I, b(i) = REIZ ¢(i),B(D)). (43) XU (D). 50
Because of the rotational invariance of ttialimensionald  Next one must make thie dependence oB,(t,b) explicit.
function we have We have from the Appendix that
8(vi—v (&(i),b(1)))=8(u(h) — v (t(i),b(1))), (44 G,(£,6)=Gr(tr)GL(b,11). (51
where The transverse part @, does not depend dn(i), while the
) N longitudinal contribution can be written as
u(i),=Rbv 4. (45)
Thus theu=1 component ofi,, is the longitudinal compo- G (b,t,)= ! !
- ! (27T)3n (deN)n/Z
nent alongR. We then have that
: - x 2 h,-Ag(ML (52)
- - ) v . exp — 5 @
CorPlo1.021= | TI (i) TT dtz (i) Daeci) Rz, e M D
= =

where the matrixM is discussed in detail in the Appendix
G,(t,b). (46)  and theh, are defined by EqgA47)—(A51). Using the ex-
plicit expressions for théa we can write
The next step in the analysis is to perform the integration

over theb variables. Toward this end we use the representa- 2 h,- hB(M Y p= sz b(i)2+2Cyb(1)-b(2)
tion

X 8(u(i)—v(t(i),b(i)))

6(ﬁ(i)—1;(t(i),5(i)))=J d”Z(i)efiﬁ(i)-Z(i)eiﬁ(t(i),ﬁ(i))-f(i) +2§i: B(i)'é(i)+582i: t23)
(2m)"
(47) +2C% (1)-1.(2), (53)
and we make explicit thé(i) dependence by writing where we have defined
v(t(i),b(i))-z(i)=a,(i)b,(i), (48) Sp=(M 1) 35=(M ), (54)
where Co=(M1)gs=(M 1), (55
ai)= - o 7 (i) S(1)=(M Y5t (1) + (M)t (2) (56)
' (N=1)1 D(t(i)) " Canz vz astL 36tL(2),
XU2(0)- 10 () =241 )N, o) (49 S(2)= (M Daefu(D= (M Daefi(2), (57

and SP=(M " ss=(M s, (58)
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=M Yge=(M 5. (59) It is then a matter of straightforward algebra to show that
The matrix inverseM ~! is also discussed in detail in the
Appendix. It is convenient to define

—Z S(i)+2f,S(1)-S(2)

Gl(b,t)= (2;3“ (deu\lﬂ)n,zexp[ - %( SR + y—b;ﬁ 2} o(DEap(i])Z(J), (70)
+2c8t1(1)-t1(2)” 60 Where
)
and theb dependence is explicit when we write Eapli])= gﬂaﬁ(ij 8= fodyival (71)
Gz<§,5)=GT<tT>GE<fL>exr{ - %(sti Bi(i) and
Qaplii) =20 NualDIN,5())- (72)

+2Cpb(1)-b(2)+22, B(i)-é(i)”. (61)

Here we have introduced the convenient notation that the
Putting this together we have index i is periodic, so that ifi=2, theni+1=1. Putting
these results together we have

CrnPlv1,02]= H H ] G
=1 | =1 cnnP[Jl,Jz]=f I1;[1 M]:[zldt;(i)lD(t(i))l}
XGrltnel( )ex%_'z 20 30 <Gt G i 2mr| 2|
(62) >
where theb(i) integrations are isolated in Xex;{ (E S(i)

Jo=f IT d"b(i) exp{ E b(i)- [a(|)+|S(|)])

—2fb§(1).§(2)”31, (73

1 - L
Xexp{ - z( S b(i)?+2C;b(1)- b(Z)H. (63)  where thez integration is given explicitly by
I

This integration is of the standard Gaussian form. If we de- d"z(i) O =
fine 9 1—f]_[ expg —i> U(i)-z(i)
(2m)" '
A(i)=a(i)+iS(i), (64) 1 R
xexp =52 2 z(DEpli))zg()) |, (74
then we have the result @p 1
n 1 2 where
Jo= (2w)”(&> exn( -5 ﬁQ) : (65) -
S 25 U,=u(i)+d(i) (75)
where and
2 > n
Q=2 A%i)-2fA(1)-A(2) (66 do()= 2 3 Ny (N[S()~TpS,(i+D)]. (76
v=1
and J, is again of the standard form for a Gaussian integral, so
=(1—f3)~12 6
yp=(1-1p) (67) | 1 1 p[ 1u e U
=——— ——expg — Ui i ,
fp=Cp/Sp. (68) Y (2m"2 JdeE 2YalD(E DaslU4]
- (77
The next step is to do thgi) integrations. We can highlight ) ) )
the z dependence if we remember that where, again, we need the determinant and the inverse of a

matrix, in this casée. Let us look at the inverse first. If we
a,(i)=2z,(i)N,,(i). (69) note the important resulused in Ref[6])
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N, ()t:(i)=-Tcé,,, 78 z . L.
(D 79 —E{E &(i)-26,51)-82) |+ S U ()
. Sp| T ifoas
where we do not sum on then
X(E™D) apij)Ug())

Qup(ij)tg(j)=—TCcNy, (79
where we do not sum o These identities suggest that we =2 Vi) W(j)e;— ﬂE V(i) - S(i), (87)
try a solution forE~?! of the form i !
where
(E™aplii) =2 ti(i)etp(), (80)
V(i) =2 ua(i)ti(i). (88)
with e;; to be determined. Inserting this ansatz into the equa-
tion defining the inverse we easily find that Putting this together leads to
e Pl 1 1 1 oy )”(”l)J
i 8ii + Cp0; 81 U1,U2[= )
€= (Tc )Z[Sb i i, i+1]- (82) nn 1.V2 (2,”_)3;1 (FC)Zn (deﬂ\/l)”/z\ZWST (2)
89

In computing deE we use the fact that N L B
puting where the final integration is over the matrlctésl):

__ 82
 de(EY Jz:f

and thatE ! can be written as the matrix product where

11

i=1 u,

e~ (W2AM (g

H: dt’ (i) D(t(i)

1

(E Yupli)= 2 th(i) e 8, 8,th (), (83 A(t)—yTZ E [Z [t (i)]2—2fth (Dt (2)}

v,v' K,/ ST,u 2 v=1
so that +S3 B0 +2C21)- 1)+ W) Ve
deE~1=det(i) ddeley,)d,, et} (j) 5
~ D(H(1))D(1(2))(deB)"D(1)D((2)) (84) ~ e M-S, (91
and A(t) is clearly a quadratic form in the matribgg(i). The
quantitiesSy, f1, andy; govern the transverse modes and
5 2 1 Sf, are defined by Eqs(A56)—(A59) in the Appendix. After
dee= 2(S—Cp)= 2 _2 (85 sufficient rearrangemet(t) can be written in the final form
(T'c) (I'e)* v
Pulling all of this together leads to the result A(t)= _Eﬁ Lo (DWop(ij)tg()), (92
L],a,b,v
2 n
T P where the matrixV plays a central role in the theory and is
CrnPlv1,02]= H H: dt,()D (t('))} given by the manifestly symmetric form

2

1
XGr(t) GE(TL) r{z g(E )

W, g(ij) = 8apdfl + U () QP ug(j) +un()OQPL()

+L, ()P ug()), (93)
R R 1
—2fb8<1>-8<2>) exg — 5 2 Ulli)  where
da 5I]da+6l+1,jdfy' (94)
X(E™Y) 461U () (86) ,
YT
do= 80 S+ (1= Sai)g (95)
and the important point is that one does not have an absolute
value sign left in the Jacobian factors. Turn next to the argu- 2
ment of the exponential in the last line of E@6). After a d°=5,,C0+(1- 4, L)fTﬁ, (96)
substantial amount of algebra we find © o TSy
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n

Sy Co J 0
OV =6 ——+6,1,—, 9 Jx(9)= €.
T ey T (pe)2 ®7 29) ul--%fl gy (1) agp (1)
(M 1)35 (M 1)36 " J d
QI(]2):_6IJ FC +5i+l,j FC 1 (98) X E E,U',"'/’“’ 1 n
plooml=1 ”39%(1) 59%(1)
and n
J J
L(i)=6 i 99 X €y .y o
a(l) a, L7 ( ) » 'Evn:1 1 n&glj;l(z) (992 (2)
where

m=—n=1. (100 X X ey J3(9),

L TTagL(2) ag)(2)
The final integration over the matrice§(i) is not of the ! "
standard form evaluated so far, but instead there is the poly- (103
nomial D*(1)D?(2) multiplying the Gaussian in the inte- \here

grand. It is technically important that there are no absolute

value signs left in this expression and the integral can be n . 1 2 o
evaluated by introducing a fielg’(i) that couples ta’(i) Js(g)zf |H1 I1 . dt, (i) exp( —5Albes, g“(')t“('))-
via T

(109
1 1 i
_ EA(t)__ EA(UJF 2 gZ ()t (). (101) J3(g) is now of the standard form and we have
a,v,l

en"™ 1 S
If we consider J3(9)= Wex 2 j;ﬁ , Ja(DA(11)gs0) |,
2 n (105
_ v . 2 .
J2(g)‘f 1:[1 ”,111 dt,()D (t('))} whereA ,4(ij) is the matrix inverse oW. It is then straight-

forward to take the derivatives with respectg@nd then set
g to zero to obtain

1 B
X ex;{ - —A(t)ez. 9ot ] (102
2 a,v,l 2
(2"
then any polynomial can be generated by taking derivatives Jz_(deNV)“’zJ4' (106
with respect tog. Using the explicit expressions for the
D2(t(i)) we have where
|
n n n n n
‘]4: 2 €,ul~~,u,n 2 6,u'~~~/.L’ E 6V1-~Vn Z €yl ! H [AMO_M’(]-]-)AV'VG_(ZZ)
uy =1 e o=t ot Y ’
+ AMUV(;( 12)Au,’,v(,( 12)+A, . ( 12)Aﬂ(rry(rr( 12)], (107
|
and the final result is ability distribution to factorize into the product for each of
nn—1) the tagged vortices. In this limit, using the results from Table
- - 1 1 1 [ I, we find that the matrices enterivg are in a diagonal form
ConPlos w2l = s (Fey (dem )2 278y
dﬁ:Dﬁij f (109)
o 2m” J (108
(detw)"2 4- where
Finally, all of the integrals have been evaluated. What is left 1
is to evaluate the determinant and matrix invers&\bf D= o’ (110
B. Large-x limit 5
As a check on the preceding analysis it is useful to work Q(l)_L—gij , (111

out the large-scaled distance limit where we expect the prob- ' _2da'(FC)2
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TABLE I. Smallx (left) and largex values for various quanti-

ties (far left) defined in the text.

kP 2x 0
k& 16 2n
O X2 1
X4
kD) I 0
3
X
e -5 ~2n
2 —2x4 1
De 160°3x? 4ng®
X8
Do O'SIS n0'3
detv % 4n?g®
3
and
2) _
0i)=o0. (112
The matrixW can then be written in the partially diagonal
form
Wep(ii)=8[8apD+ uali)ugi], (113
where
) Lu,(i) (114
)= ———=.
I'cy2no

Notice that there is no longer a difference between the lon-
gitudinal and transverse directions as expected. The inverse

matrix A then satisfies the equation

DA (i) + Ua() X UL (A 5[ )= 8,58, (115
M
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. 1
deTA(ll)— W(II) (120)
It is then easy to see that
det\[ii |=D"[1+v?/v 7], (122)

where v2 is given by Eq.(29). If we then carefully keep
track of all the factors we see that H§.08 reduces to

lim CynPlv1,02]1=noP[v11ngP[v 2],

X—00

(122

wherenyP[v;] is given by Eq.(30) in Ref. [6] and, after
proper normalization, leads to the expression for the single-
vortex velocity probability distribution given by E@28).

C.n=d=2 case

The general expression f@nnP[Jl,Jz] is complicated.
Let us restrict ourselves here to the casenefd=2 where
detW andJ, can be evaluated explicitly. Let us define

detA(ij)=Ag(1j)Ax(i]) = ArAi])Ax(i]),

where the matrixA,4(i) is eitherW or its inverseA. We
can also define

(123

Qa=[A11(22)A21(21) — Ap1(22)A11(21) J[ A1 11) Az 12)
—Au(1DA1(12) ]~ [A122) Ay (21)
—A2A22)A1(2D) J[A1( 1D A21(12) — Az (11)Agy(12) ]
—[A12(22)Az(21) — Ap1(22) A1x(21) ][ A11(11) Ax(12)
—A2(1D)A1(12) ]+ [ A1 22) Azl 21)
—AA22)A1x(21) J[A11(11) Az (12)

—Ax(1DA;(12)]. (124

This equation is in the form of a trap that can first be solved, (arms of these quantities we have

to obtain
— . ug(i)/D
> UL (DA (i) = 8 ——F (116
: 1+§ uZ(i)/D
and the full inverse is given by
) . Ug(i)ugi)
Aoplil)=8;[ D 15,5- £
D2 1+, Ui(i)/D}
o
(117

With these results it is easy to see that the quadtjtgan be
written in the simple form

J,=(n!)%detA (11)detA (22), (118
detW=detW(11)detW(22), (119

and

detW=detW(11)det(22) + detW(12)detV(21) + Qy
(129

and

J,=4[detA (11)deth (22) + 3 deth (12)deth (21) + Q,, .
(126)

It is clear that the last nontrivial step before evaluating
CnnPl[v1,05] is to determineA ,4(ij). This will be carried

out in general in Sec. IV E; however, most of the important
physics can be extracted in the problem by considering the
simple case where the transverse velocities are both zero. In
this case one can make substantial analytical progress.

D. Zero transverse velocities

Before tackling the complete determination I%fle,Jl]
it is very instructive to study the much simpler case where
the transverse velocities are set to zero. This case is of inter-
est not only because it is simple but also because it is the
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most probable situation. The most likely situation is thatwhere
each of the two tagged vortices will have zero transverse

velocity.

If the transverse velocities are zero then the problem sim-

plifies since the matrixV reduces to the diagonal form
Wa,B(IJ ) uzBDIJ ’ (127)
where

D =d?+ 8, [u() QP u() +ui) QP 7+ 5 2Pu()]

(128

andu(i)=u,(i). Clearly, the longitudinal and transverse de-
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1
AL('J)_ 1D [a|+15|1 bfsj,iJrl] (139)
and
AT(iJ):deDTdT[5ij—fT5j,i+1]- (140

Using these results, one can work out the quardtityor the
casen=d=2 with the result

grees of freedom are uncoupled and we have after some ma-J,=4{detA (11)detA (22) + 3[ detA (22)]?

nipulations

D =d"[&;+ 118,441, (129
while

Dii=a;8;+bdj 1, (130
where

a.=<M—1>55+<M—1>33u_<i)2—2m<m—1)35u_<i>,(

131)

b=(M"Y)ge+ (M H)zu()u(2)+ (M Yz u(2)—u(1)],
(132
and
— u(i)
u(i)= ﬁ (133)

—AL(2AL(1DAF(12) — Ar(22) Ar(1D)AF(12)},

(141

where we have used the fact that the matridggij) and
A+(ij) are symmetric. Putting in the explicit forms fa,
we obtain

[deD'deD "+ 2b?(d"f1)?].
(142

J =
* (deDT)2(deD")?

Putting all of this together fon=d=2 and the transverse
velocities zero, we have

e o= 4 1] 1 chT
P12l 06 GeM| (deDb)?deDT | (deDb)?
(143

Clearly, the next step is the explicit evaluation of Dlet

In this case we see thdly is a relatively simple matrix. We Using the expressions fa; andb given by Eqgs(131) and
need its determinant and then its inverse on the way to evaly132, we obtain, after some algebra, that

ating the quantityd,. The matrix ofW for generaln is sim-

ply given by
dewW=(deD")" (deD"), (134
where
T_/4T\2 2\ _ 1
deD'=(d")“(1—-fy)= = (135
T
and
deD'=aja,— b (136

The quantity déd" is key in the development and we shall
return to it soon. First we need to evaluate the invers&/of

4
deDl =2 | 5o+ U1 -(2)]
DoDg| 70 2

+yaUA(1)+U2(2)]+ ygu(1)u(2)

+ DTN -T(2)]

+y,u3(1)Uud2)], (144)

where the scaled longitudinal velocities are defined by

to complete the calculation. In this case this involves theand

solution of the equation

2 DA ap(k)=8agy (137
which is easily found to be given by
A apli])= Sapl 0a L AL(]) + 80 TAL(I])], (138

u(i)=u()L (145

Yo=— kDK, (146)

y1=2[(1- )P k@ +(1+ )P F],  (147)
- DE DO z

=(1-f) —=+(1+f)—+ -, 148

YA ( )80'3 ( )20_3 4 ( )
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plus terms that are higher ordeninWe can write this in the

— De Do 72 :
vg=(1—f)—+(1+f)———+, (149  more convenient form
4¢3 Poad 2
72_(1 f) (2) (1+f)KE (2) 4(1—f2 ) (1) deDL_DOD [1+V2/V 1, (160
(150)
where after some algebra we obtain
=2(1—f)[ kP k@ — kD 97, (151) o
o'yo 96 161
Ya=(1- )9k (152 DoDe  ¢5x8’ (163
where thex’s are given as functions of by Egs.(A91)- —T(+T
(A96) in the AppendixD g andD¢ are given as functions of V=ub+u(), (162
f by Eqs.(A83) and (A84) in the Appendix. Note the rela- zpg
tionship 2y,— yg= v». Notice the crucial result that after L
rescaling the velocities by a factor bf the time dependence s 'yo )
drops out of ddd‘. This will eventually lead to the result Vo===28x" (163
that scaling holds for the probability distribution at late times 7A
if we rescale velocities in this manner. Similarly, we find for smallx thatb is dominated by, and
' We also need to express the quantityn terms of the  jyen to leading order ix by b= —384k%c. We also need
«’s. Itis convenient to write Cr=o to leading order inx. The probability distribution is

dominated in the smak-limit by the term proportional to

b=botbe. (453 2 The other term is down by a factor &f. Putting all of
where this together, we obtain
(0’2 6 1
(2) _ O (1\T1 _ (1) C..P , _ 164
bo= 2D, { k@ —(1-H)xJu(D)u2)+(1-1)«§ anPlv1,02]= (LTINS (164
x[u(2)-u(1)]}, (154  Then, asx—0 we find, with increasing probability, that
V=1u(1)+u(2)=0. (165

2
be=g—{—# +(1+ O kLTDTR) +(1+ ) x
. This is just the physical statement that there is very low
x['ﬁ(z)—'ﬁ(l)]}_ (155 probability that there is a nonzero momentum of the center
of mass(c.m) of the two tagged vortices. Thus all of the
The last ingredient needed to evaluate the probability distriaction isin the center of mass where we can set
bution is _ _ _
u(2)=—u(l)=u. (166
Co f'(x)
Cr=—g =" ~ofx), (156 If we return to the probability distribution for the case
where the c.m. momentum is zero, then

using the OJK form forf(x) in the last step. 4

Let us look first at the smak-limit. Since the OJK form L9 T T e T3, T
deD"= + yU+ y,Uu 4+ y3u°+ y,u
for f(x) is easily expanded in a power seriesxrand we DoDE[V0 yimTya 73 74Ul
can extract to Ieading order iR, yo= 32x4, y,=—24x5, (167)
¥2= X%, y3=— 45X, y4=%%/12, yo=3x% and yg=2yx. and
We also need
2.3 o’ (2) U 2 7
De=16x%03, (157 bo= aDg — [« +(1-HxPu2+2(1-1)x5ul,
8 (168
X
Do=0°— (158
48' i ) 072 60y
bE:D_E[_KE —(1+f)kg’u“+2(1+f)xg’ul.
Notice that they, and yg dominate the expression for (169
deD" in the smallx limit and we can write to leading orders
in x In the smallx limit these reduce to
ot _ 384
deD"-= {vot+ yalu()+u(2)]12 (159 b=bo+bg=———"1g4, (170
DODE X40'
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FIG. 3. Plot of unnormalized probabilitp[ v ,v,] for different FIG. 4. Same as Fig. 3, except=0.7, 0.4, 0.2, and 0.1 as one

values of the scaled distancebetween the two tagged vortices moves from left to right.

versus the scaled velocity in the center of mass

TU=X-U(2)L/Tc=—X-U(1)L/Tc. The normalization changes with Fig. 1. The interpretation that this is the interaction between
x so the different heights of the curves are not significant in thisvortices and antivortices holds only out to modest values of
plot. The curves, as one moves from left to right, are labeled byvhere the population of same-signed vortices begins to ap-

x=3.0, 2.0, 1.0, and 0.7, respectively. pear(see Ref[5]).
where E. General evaluation
U u? The complete determination of the two-vortex velocity
fg=1— YRITY (17D probability distribution as a general function of and v,

can be carried out in the=d=2 case if one can invert the
matrix W,4(i]) to obtain its inverse\ ,4(ij) defined by

6
de(D"Y)= —fL (172
X . .
7 2 W, (i) A, 5(Kj) = 84p8;; - (177
. o,k
with
This inversion is a quite unpleasant task if one heads in the
_1_ E E’ 2_ i s, L4 wrong direction. It is useful in order to make the develop-
fl=1 u+—u u°+ u’, 173 ) :
47 48 24 384 ment more transparent to introduce a mixed operator nota-

tion whereW,; is an operator in the space associated with
the indices andj,

u=ux. (174 Wopg(ij) = (i Waglj)- (178
The probability distribution is given in the—0 limit by Then the matriXW,; is given by
N o ()'2 6f2 WaB:5aﬁda+an(l)u‘B+an(2)LB+ LaQ(Z)UB,
CnnP[v1,v2]=(F—C) f—f,f. (179 (179
L

) ) o o whereu, andL , are diagonal operators
A key conclusion we can draw at this point is that it is only

the combinatioru=ux that enters the probability distribu- (ilugliy=ug(i) 8y, (180
tion with high probability ask— 0. Thus the relative velocity
increases as g/asx— 0. We plotf/f? as a function ofi in (ilLali}y=La(i) 5 . (187)
Fig. 2. We note that the most probable values of the relative . , , i i
velocity as a function ok for smallx are given by The key idea is that if we can writ&/, in the form
I'c x Tecx W,5= 85D ot PP, (182)
WETXT R (179

Whereﬁﬁ is the transpose d?,, then we can carry out the
with k=2.19 a pure number. This is the result quoted in thenversion straight away. Let us first show this and then return

Introduction. to show thatwW can be written in the assumed form.
If we then plot the two-vortex velocity probability distri- ~ We want to invert the equation
bution function for zero transverse velocities in the c.m. for
generalx as s_hown in .F_igs. 3 and 4,.we obtain the r_nost E WA =g (183
probable relative velocities as a function fas shown in w
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Inserting the assumed for82) for W we obtain
DA 45+ Pa% PLA =805 (184

Multiplying from the left by the matrix inverse dD,, this
becomes

AQB+D;1Pa§ PLA,z=D;"8.5. (185

This equation is then in the form of a trap for the quantity

EMPMAMB Multiplying Eq. (185) by P,, and summing over
a, We obtain a closed equation fErﬂ'ﬁﬁAMB, which has the

solution

% WA Lp=[1+Q]" 2 PsDs", (186)
where the X2 symmetric matrixQ is defined by
— D -1
—%) P.D,'P,. (187
This leads directly to the final result
App=D 18,5~ D 'P[1+Q] 'PzD,;*, (188

which is clearly symmetric. This gives a practical expression

for the inverse once one has identified the matriges
andP.

The key observation that allows one to wrié in the
desired form given by Eq182) is that the matrix2{" can
be factorized in the form

= E WikOkj (189
where
wij=w05ij+wlﬁjyi+1 (190)
and
VS e e
\/_
W = 2FC[\/1+fb N} (192

Using this factorization result, it is then easy to show that
can be written in the forn182 with

=dr}—5a,L; CL(ik)CL(kj), (193

P(ij)=uu(i) o+ Cfij), (194
with

Cu(ij)= amz O ot (195
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Combining these results, one has an explicit expression for
the two-vortex velocity probability distribution for arbitrary
velocities. The major qualitative feature of including the
transverse velocities is to allow one to look at the widths of
the distributions in the transverse directions since we find the
most probable configurations are those where the transverse
velocities of both vortices are zero. These widths turn out to
be comparable to those associated with the longitudinal
modes.

V. DISCUSSION

In the analysis here we have looked at the correlation
between vortices regardless of their signs. At short relative
distances, where it is unlikely to have two vortices of the
same sign, one can interpret the results in terms of vortex-
antivortex dynamics. It is clear that one can go further, as
discussed by Mazenko and Wickhdfl, and separate the
probability distribution into that for vortex-vortex and
vortex-antivortex pairs. The key idea, which is essentially
equivalent to that used in the case of spatial correlations, is
that a factor ofP, (1)=3[1+sgriD(1)] restricts one to the
positive-charge  vortex  sector, while P_(1)=3[1
—sgriD(1)] restricts one to the negative-charge antivortex
sector. Thus the probability for vortex-vortex correlations is

CuoPupr(12=(n(1)8(w1—v(1))P,(1)n(2)

X 8= v(2))P,(2)). (196)
The vortex-antivortex contribution is given by
CauPa(12)=(n(1) 81~ v(1))P_(1)n(2)
X 8(,—v(2))P.(2)). (197)

These quantities can be multiplied out and, and after using
symmetry to show that the correlation between the signed
and unsigned quantities is zero, can be expressed in terms of
the probability distribution determined in this paper and

C,pP,p(12)=(p(1)8(v1—v(1))p(2) 8(w,—v(2))),
(199

which has not yet been computed. It is expected f)g(12)
will be difficult to determine because of the addition factors
of the sgnD. The analysis will be essentially identical in
structure up to Eq125 with the expression fod, showing
the replacement

DA(t(1))—D(t(i ) D). (199
The resulting integral fod, cannot then be represented in
the product form given by Eq103). This remains a problem
to be solved.

In principle, Eq.(108 gives an expression that can be
integrated over all velocities to giv€, and determine the
overall normalization. It is not clear how to do this analyti-
cally since the velocities appear in a complicated fashion in
deW andJ,. A numerical determination is quite feasible.
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VI. CONCLUSION

In this paper we have shown how one can make progress

2771

Hi(1) =i 8(1i), (A7)

n
q;*+si“v(2i)+l;l Ke(i)VE,

in an analysis of the dynamics of point vortices in the context
of phase ordering kinetics. The results include the effects of g V£, is the uth component of the gradient acting 6ﬂ
|

other vortices and order-parameter fluctuations on the dyqpq

average of interest can then be written as

namics of the tagged vortices. The results appear completely

physical and the determination of the relative velocity as

2

short distances appears to be a useful result. The method Gz(g,ﬁ)zf dﬁ[l]dﬁ[Z]ex;{—iE (gi.ﬁ(i)
used here appears to generalize easily to the case of string =1

defects. This will be the subject of subsequent work.
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APPENDIX: GAUSSIAN AVERAGE

In this Appendix we work out the Gaussian average

Gy(&,b)=(Wy[£,b]W,[ £,b]), (A1)
where theW's are defined by
Wi[¢,b]=a(m(i))s(b(i)— VZm(i))
X H1 seni—-viim,i), (A2
V=

where we have already assumed thatd in the product.
The first step in the evaluation @&, is to use the Fourier
representation for thé function to obtain

Wi[§,5]=f O3 ]l (g isi-[b()~ VFm(i]

xeXp(—iE k;(i)[g;;(i)—vﬂmm)]),
M, v

(A3)
where we have defined
- d'g; d"s; dk’ (i
i a4 (i) o
m" @2m"wi=1l 27

We can rewrite this in the more useful form
Wi[g,B]zf dﬁ[i]exp{—i(i-ﬁ(iHMil k;(i)g;(i)”

xexp( ail dl_Hf’u_)ma(l_)), (A5)
where

(AB)

f di= J dir,dt,,

+ k;(i)f;(i)”
m,v=1

2 n
><<exr{2 > | dm(—)mamb.
i=1 a=1
(A8)

The average is of the standard form for a Gaussian average
with the result

2 n
<ex[{2 > fdﬁ"ia(l_)ma(l_)D:e‘(“Z)Ao,
i=1 a=1

(A9)
where
22 — —
A0=—”2:1 a’ﬁ_ljdlfdZHf(l)Hf(Z)CO(l,Z)éaﬁ
(A10)
and we have used
(M (1)M(2))=Co(1,2)8,,- (AL1)

Inserting the expression fdd into A; we need the defini-
tions

Colii) =Sy, (A12)

[V& Colij)]li-j=—nS?, (A13)
[VE VE Colii)li—j=S", (A14)
[V Vi Colii)]li=j=6,,8?. (A15)

Using the fact tha€,(12) depends only on the magnitude of
R=r,—r,, we convert all derivatives to those with respect to

Pl

V{3,Co(12)=CyR, (A16)

V{5, Co(12=—CiR,, (A17)
where the prime indicates a derivative with respectRio
Going further, fori=1 and 2,

2 2 ” (d_l) ,
Vi Co(12=VECo(R)=Co+ —=—Cj,  (AL8)



2772
v e o C(I) =
VéLl)V(Z)CO( 12) == COR,LLRV_ F( 5;LV_ R/.LRV)!
(A19)
V(Z)V(z)co(lz): PRy, (A20)
V(l)v(l)CO(lz):pAR : (A21)

where

(d-1)

C!
p=Co+ (C"— —) [VRCo(R)]'.  (A22)

We see that it is then natural to use the coordinate system
parallel and orthogonal t&. Indeed, we can introduce the

orthonormal seRg where

n

2 RiRi=6,,, (A29)
n
Y RERE=6,, (A24)

The only other thing we need to know about this set is that

Ri=R;. (A25)
Next we define
n
wg(i):;l REK(i), (A26)
which can be inverted to give
n
k;(i)zﬁgl REWS(i). (A27)

In terms of this new set of variables,

PRUAOIEDS (% ﬁﬁwgm)(; "wm))

iu,v iu,v

= > [Wy()]2. (A28)

i,B,v
We then have

Ao=A(Q) +A(S)+A(WL) +Ar(W) +Ac(q,5,W, ),

(A29)
where
2
A(@) =02, 6°+2Cody- Gz, (A30)
2
A(S)=SYD) §2+2(V4Cp)S;- Sy, (A31)
i=1
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2
AL(W>=§2§1 W, (1)2—2(CHWL(1)-W(2),
(A32)

where the longitudinal part of the tenséf is defined by

We(i)= E RLK(i (A33)
The transversecontribution toA is given by
n n 2
ArW)= 2, 2 | S22, [W())°
—2(CH/RIW(LW2(2) | (A34)

The termcouplingthe setq,s,W, is given by

2
Ac(G,8,W) = —2ns2>i=21 qi-Si+2(gy- Sp+ 0+ $1) V2C

—2(psy+Cyay) - Wi (2)

+2(ps+Codz) - Wi (D). (A35)
Notice that theransversemodes decouple from the longitu-
dinal set coupled i .

It will be very useful for us to rewritédy as a sum of a
transverse part, already written down, and a longitudinal part
that is a quadratic form in the vector

b.=[a(1),q(2),8(1),5(2),W (1),W(2)],

where we assume that the subsceptuns from 1 to 6. We
have then

(A36)

AL=2 Mg g, (A37)
where the matrixM is given explicitly by
S Co  up U, 0 Uy
Co S u, up, -—-u, O
up u, S% C, 0 ug
M= up u, C, S% —u; ©
0 -u, 0 —-u; S?2 ¢,
uuy O u3; 0 C, S?
(A38)

Various quantities entering the mat are defined by

—V4C, =L V4 (x) (A39)
0 L2 X 1

(o
S<4):V400|RZOZSFa (A40)
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C,=—-Cy=—of", (A41) yr |01 non 2 -
GT(tT):(E) exp— 5o 251- Z 21 Zl [t;i“)]z
u;=—nS?=—ng, (A42)
U,=V2Cy=0V2f(x), (A43) - 2th;(1)t;(2)) } : (AS5)
T o2
uz=—p=-[V,f(0]", (A4q)  where
=S2, A56
Us=—Cy=—Laof’(x). (A45) St (AS6)
The complete change of variable frommto W in Eq. C :_C_é (A57)
(A26) requires noting that the Jacobian taking one filoto T R’
W is one. The argument of the exponential outside the aver-
age in Eq.(A26) can also be written in terms of the s&g C:
and the transverse part W. Then one has fT:§: (A58)
2 n
2| 2 k(g +si-b(i) and
i=1|u,rv=1 s m
6 2 n o Yi=(1-fH7" (A59)
:;1 h“'¢“+zl Zl ,;2 Wﬂ(')tﬂ(')’ (A46) The longitudinal contribution tdG, is also a standard
Gaussian integral:
where
o - d"¢a(i) - e o
hy=h,=0, (A47) GL(b,t)= H H —lexg =i X N, b,
i=1|a=1 (277) a=1
hy=b(1), (A48)
Xexp — = ; Mopdo bp
hs=b(2), (A49)
1 1
hs=1t.(1), (A50) (2m)3" (detM)™?
he=1t,(2) (A51) 1Q
67 L( ! Xex;{—za;l hahﬁ(Ml)aﬁ) (AGO)
and
n Thus the determination @, reduces to an evaluation of the
()= RA(INEL(D). A52 inverse and determinant of the matik given above. If we
w(D 2 u(D€p(1) (A52) multiply M from left and right by the matrix
We then have the result th&, factorizes into longitudinal 1 X 0 00 O
and transverse components:
-1 0 00 O
G(&,b)=G1(tr)GL(b,tL). (A53) 0 0 ! 10 0
First consider the transverse contribution given by Q= 0 0 -110 0 ' (AB1)
, 0O 0 0 o0 3% -1
n n .
dW, (i) 1
GT<tT>=”H II 11 — r{——AT(Wﬂ 6 0 0 03 1
21 v=1 p=2 2 2
2 n then the new matrix
=i > D (W) | (A54)
i=1v=1p=2
Maﬂzgj QMO{QV,BMMV (A62)

This is a standard Gaussian integral that can be evaluated
with the results has the block diagonal form
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2(Sy—Cyp) 0 U;—U, 0 Uy 0
0 %(So+C0) 0 Ul+uZ 0 Uy
- u;—u 0 3(SW-cC,) 0 zu 0
= 17 Y2 2 4 243 (A63)
0 Uy+Uy 0 2(S¥+Cy) 0 2u3
Uy 0 7 U3 0 3(S?+Cy) 0
0 Uy 0 2u5 0 2(S?-C,)
|
It is easy to see that the inverse figk can be expressed in S (So—Co)(S(z)JrCz)—U‘Z;
terms of the inverse o as (M™%)35= Do ’ (A71)
- _ v ~ Uy—Us)us— (Sg—Cop)u
(M,0= 3, QuQus(M Nop. (A64) (1) g 2712 4DCES° s A79)
SinceM is block diagonal the evaluation of its determi- (S Co)(SP=Cy) = (ur—up)?
nant and inverse elements is straightforward. We find (M™%)s5= Do . (AT3)
detM=DoDe, (AB5) _ (So+Co)(S?~Cp) 1
(M~ 4= D : (A74)
whereDg is the determinant of thedd part of the matrix E
given by (U FUuy)uy—(Sy+Cou
~ 1T Uz)Ug 0)U3
(V1) 4= 5 . (AT9)
2(Sp—Co) U;—uy Uy E
ui—u;  3(S%-Cy) 7 U3 : o (Sp+Co)(SM+Cy) — (ugtup)?
. Lo (M™")g6= D . (A76)
Uy 7 Ug 2(82+Cy) E

(A66) . =~ 1 .
All odd-even inverse elements such a4 (%), vanish and

so the rest of the elements follow using the symmetry of
(M~1). One can then easily extract the inverse elements of

2Do=(Sp— Co)[ (S~ Cy)(S?+Cp) —u3]— (u;—Uy) (M~h:
X[(Uy=U) (8?4 Ca) — Usliy] + Ug[Uz(Uy — Up) (M 35= (MY 4= 3 (M Yag+ (MY, (A7)

Cu(SD—CT, AG7 - -
Ua( o] (A7) (M Yg5=(M Y ege=3 (M) 5s+(M g5, (AT8)

D¢ is the determinant of thevenpart of the matrix given by

(MY 30= (M"Y 40— § (M 1)gg, (A79)

2 (So+Co) Ut Uz Ua -1 -1 171 -1
Uptu,  2(S9+Cy) 2u, , (M7 )35==(M"7)46= 2 (M 7)35— (M~ 7) g, (A80)

Uy, 2u, 2(S?P-C,) _ _
(A68) (MY ge= = (M) 5= 7 (M) g5+ (M 1) 4,
(A81)
where

(M ™ Hge= 5 (M1 55— (M 1)gs. (A82)

De/2=(Sp+ Co)[(S¥+Cy)(S?—Cp) —uj]— (us+y)
2 In terms off and its derivatives we find that we can write
X[(Ug+Uy)(S?—Cy) —ugly] + Ug[Uz(Us +Uy) o 2 "
=253 _ 1)q2
—U4(S(4)+C4)]. (A69) Deg=20 {KE KE (l+f)[KE ] }, (A83)

1 37 (0 (2)_q_ (1)72
Since it is easy to show that @@+ 1 we obtain Do=z0%{~ko'ko' ~(1-DNlka']7,  (A84)

—_~ -1 _12.2 _ (0)
def = deQdeMdeQ=deM=DcDp.  (A70) Do(M™)3s=L 0 (1-T)xo (ABS)

The needed inverses are given by Do(M™Y)gs=Lo?(1-f)x§, (A86)
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~ 12
Do(M™)ss=— 0« (A87) ©_ g _ )
) ke =(F") = 5 (A93)
De(M ™1 4= L20%(1+ )k, (A88)
_ D) ro2er s f(V2f)_
De(M Y 46=Lo?(1+ ), (A89) ko =(VO) '+ ———, (A94)
-1y — 2,.(2)
PeM Dee= 0w (A90) K@ =(1- DV _+[(VZ) TP, (A99)
These results give the explidit dependences of the various )
matrix elements. Th&'s are independent df and given b S (D)
P gven by W ==(t") = T, (A96)
f/(V2f),
B =(v2f) — ———, A91
we =(Vh) 1+f (ASY) where we have introduced the notation
k= (1+ ) (V)L —[(V2F) ]2, (A92) A.=A(x)=A(0). (A97)
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