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Vortex velocity pair correlations

Gene F. Mazenko
The James Franck Institute and the Department of Physics, The University of Chicago, Chicago, Illinois 60637

~Received 8 May 1997!

The vortex velocity probability distribution for two distinct vortices is determined for the case of phase-
ordering kinetics in systems with point defects. Then-vector model driven by time-dependent Ginzburg-
Landau dynamics for a nonconserved order parameter is considered. The description includes the effects of
other vortices and order-parameter fluctuations. At short distances the most probable configuration is that a
vortex-antivortex pair has only a nonzero relative velocity that is inversely proportional to the distance between
them. The coefficient of proportionality is determined explicitly.@S1063-651X~97!08909-5#

PACS number~s!: 05.70.Ln, 64.60.Cn, 64.60.My, 64.75.1g
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I. INTRODUCTION

It seems plausible that much of the structure one see
the phase ordering of many materials@1,2# can be associate
with the evolution and correlation among defects@3# such as
vortices, monopoles, and disclinations. These topologic
robust objects grow out of the frustration suffered by a s
tem with a continuous symmetry that is thermodynamica
driven to align in a broken symmetry state. In the case of
n-vector model with the number of components (n) of the
order parameter equal to the spatial dimensionality (d) one
has point defects that are vortices forn52 and monopoles
for n53. Because of the conservation of topological char
the ordering in these systems is through the charge cons
ing process of vortex-antivortex annihilation. Topologic
constraints render the ordering in such systems to be lar
independent of the microscopic details of the material. In t
paper the following question is addressed: What is the pr

ability, given a vortex at positionrW1 with velocity vW 1, that

one will find a vortex at positionrW2 with velocity vW 2?
Clearly, in answering this question we obtain a tremend
amount of information about the dynamics of vortices.

The calculation of the two-vortex velocity probability dis
tribution is a very involved process. In principle, one cou
probe vortex dynamics by applying a force. Unfortunately,
neutral systems it is very difficult to couple directly to th
vortices. The two-vortex velocity probability distributio
serves this purpose by looking at the motion of one vortex
the fixed presence of another vortex a known distance aw

The physical results of this calculation, carried out in d
tail for n5d52, are relatively simple to state. The approp
ate probability distribution is a function only of the scale
velocitiesuW i5vW i / v̄ for i 51 or 2 and the scaled separatio
xW5(rW12rW2)/L(t). Here L(t) is the characteristic length in
the problem, which grows with timet after a quench ast1/2

in the present case@4# and drives the scaling behavior@1#

found in the problem. The characteristic velocityv̄ , defined
carefully below, is inversely proportional toL(t). For a
given scaled separationx between two chosen vortices, th
most probable configuration corresponds, as expected,
state with zero total momentum and a nonzero relative m
mentum only along the axis connecting the vortices
561063-651X/97/56~3!/2757~19!/$10.00
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vW 152vW 25v x̂. ~1!

Moreover, there is a definite nonzero value forv5vmax for a
given value ofx. These most probable values are given a
function of x in Fig. 1. The most striking feature of thes
results is that for smallx the most probable velocity goes a

vmax5
k

R
, ~2!

whereR is the unscaled separation between the vortices
k52.19 in dimensionless units defined below. The res
giving vmax inversely proportional toR is consistent with
overdamped dynamics where the relative velocity of the t
vortices is proportional to the force, which in turn is th
derivative of a potential that is logarithmic in the separati
distance. Thus these most probable results are consi
with the short-distance behavior being dominated by the
nihilation of vortex-antivortex pairs. From previous work@5#
we know that there is low probability of finding like-signe
vortices at short distances. Thus our results giving the ve
ity as a function of separation should be interpreted in ter
of annihilating vortex-antivortex pairs. The results for sam

FIG. 1. Most probable scaled velocity of vortex 2 multiplied b
the magnitude of the scaled distance of separationx,

u5xW•uW (2)L/Gc versusx. This velocity is directed alongx̂, the line
connecting the two tagged vortices. The most probable velocity
vortex 1 is equal and opposite to that of vortex 2.
2757 © 1997 The American Physical Society
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2758 56GENE F. MAZENKO
signed vortices can also be carried out, but is considera
more involved, as discussed below.

The work here builds on the work in Ref.@6#, where the
single-vortex velocity distribution was determined. As in t
single-vortex case, there are significant widths associa
with these most probable results. The widths come ab
because of the existence of other vortices as well as fluc
tions in the order-parameter field. There are, as shown in
2, significant widths in the probabilities due to the presen
of other vortices and fluctuations in the order-parame
field. For example, asx→0, while the most probable relativ
velocity is 4.38/R, the half-width at half maximum for this
quantity, in these same units, is 2.08/R. In the large separa
tion limit the probabilities become, as expected, uncorrela
and each has the distribution of velocities found previou
@6# for a single vortex.

The analysis here is built upon previous work on the
dering kinetic ofO(n) symmetric systems. The best ava
able theories@2# for the order parameter correlation functio
were built up in the early 1990s and have led to the be
that we have a fairly good understanding of how to calcul
the associated scaling function. It also has become clear
the order-parameter correlation function or structure facto
a rather structureless quantity that does not give a great
of direct information about the underlying disorderin
agents. This led Liu and Mazenko@7# to look directly at the
correlations between defects in the scaling regime. The
different element in this work, as discussed in some de
below, was the realization that the positions of the vortic
could be labeled by the zeros of the order parameter fi
which could in turn be mapped onto the zeros of an auxili
field mW (xW ,t). They were able to show, following work b
Halperin @8#, how one could write explicit expressions fo
the signed and unsigned vortex densities in terms of the a
iliary field mW (rW,t). This then avoids the technically defeatin
step normally encountered, which requires one to identify
vortex positions.

The signed vortex density correlation function was det
mined analytically in Ref.@7# in terms of the variance of the
auxiliary field under the assumption the auxiliary field
Gaussian. This calculation left the auxiliary field correlati

FIG. 2. Probability distribution~unnormalized! for the scaled

longitudinal velocity u5xW•uW (2)L/Gc52xW•uW (1)L/Gc in the
small-scaled-distancex limit. The peak in this curve gives the
small-x limit of the quantity plotted in Fig. 1.
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function f (x) undetermined. Liu and Mazenko assumed th
one could usef (x) determined from a treatment of the orde
parameter dynamicsaway from the defect cores.

The charged orsigned vortex autocorrelation function
does not separate out all of the desired information sinc
mixes the correlations between like- and unlike-signed v
tices. It is not difficult to introduce anunsignedvortex auto-
correlation function. Between the signed and unsigned a
correlation functions one can construct linear combinatio
that give the vortex-vortex and vortex-antivortex correlati
functions. Unfortunately, for technical reasons it is more d
ficult to determine the uncharged autocorrelation functi
Only recently have these difficulties been overcome by M
zenko and Wickham@5#. They found the results, expected o
physical grounds, that there is a depletion zone at short
tances for the vortex-vortex correlation function indicati
repulsion. Simulations@9# and experiments@10# also show a
depletion zone at short distances for like-signed defects. T
is expected on physical grounds since like-signed defects
pel one another. There is a clear discrepancy between th
and simulation results at short-scaled distances. The th
shows a monotonic behavior as the separation distance
to zero. The simulation, however, shows a maximum at sh
separation distances and then falls rapidly to zero. The de
tion zone seen in this case in the simulations is harde
understand physically since the pair is attractive and hea
toward annihilation. While the theory satisfies the sum r
implied by topological charge conservation, it does not a
pear that this general constraint is satisfied by the sim
tions. It appears that the short-distance behavior in the si
lations is contaminated by the choice of a vortex co
distance that is comparable to distances associated with
unphysical depletion zone.

It seems clear that it would be desirable to supplem
this information on the spatial correlation of vortices wi
information concerning vortex velocities. It was recen
shown by the present author@6# that one could write down an
explicit expression for the velocities associated with po
defects in terms of the order-parameter field. A key ingre
ent in this development is the identification of a continu
equation satisfied by the signed or charged vortex dens
This continuity equation gives a fundamental expression
conservation of topological charge in the system. Using
Gaussian closure assumption, one can determine the sin
vortex velocity distributionP@vW 1#. The most interesting
physical result is that there is a large velocity tail that w
interpreted there as arising from the high velocities in
late stages of vortex-antivortex annihilation. Bray@11# has
used scaling arguments to obtain the same large velocity
The existence of these large velocities will be supported
the calculation carried out here.

One common and concerning element in the calculati
of defect correlation functions and defect velocity distrib
tions is the requirement that the auxiliary field scaled cor
lation function f (x) be analytic as a function ofx for short
scaled distances. For example, the fourth-order grad

@2¹x
4f (x)#ux50 enters naturally into the analysis ofP@vW 1#.

The need for analyticity inx for f (x) is not naturally con-
sistent with the simplest self-consistent analysis off (x) fol-
lowing a treatment of the order-parameter correlation fu
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56 2759VORTEX VELOCITY PAIR CORRELATIONS
tion. Mazenko and Wickham@12# recently showed that on
can construct the theory so thatf (x) is analytic inx for small
x, but this was at the expense of making the properties of
order-parameter correlation function worse@13#.

The tension between using the order-parameter dynam
to determinef (x) and the requirement thatf (x) be analytic
in order to treat defect dynamics has been, to a degree
lieved by the very recent work of Mazenko and Wickha
@14#. They used the recently proposed continuity equation
topological charge to derive the equation satisfied by
auxiliary field correlation function under the circumstanc
that the field is constrained to be near a defect core.
discussed briefly in Sec. III C of this paper, they find t
clean result that the auxiliary field correlation function det
mined in this manner satisfies a linear equation. This resu
self-consistent with the assumption that the auxiliary field
Gaussian. The solution of the associated linear equation
the Ohta-Jasnow-Kawasaki~OJK! @15# form

f ~x!5e2~1/2!x2
, ~3!

which is clearly analytic in the small-x regime. They argue in
Ref. @14# that the use of the Gaussian assumption in de
mining defect dynamics, such asP(vW 1), has a stronger fun
damental justification than in the case of the determination
the order-parameter correlation function. In the calculation
the two-vortex velocity probability distribution presente
here it is assumed that the order parameter field can be
placed by a Gaussian field in those portions of space ne
vortex core and the associated auxiliary field correlat
function is of the OJK form.

II. ORDER-PARAMETER DYNAMICS

The system studied here has a defect dynamics gene
by the time-dependent Ginzburg-Landau model satisfied b
nonconservedn-component vector order parametercW (rW,t):

]cW

]t
5KW [2G

dF

dcW
1hW , ~4!

whereG is a kinetic coefficient andF is a Ginzburg-Landau
effective free energy assumed to be of the form

F5E ddr S c

2
~¹cW !21V~ ucW u! D , ~5!

wherec.0 and the potentialV is assumed to be of theO(n)
symmetric degenerate double-well form. Since only th
properties ofV will be important in what follows we need
not be more specific in our choice forV @16#. hW is a thermal
noise that is related toG by a fluctuation-dissipation theo
rem. We assume that the quench is from a high tempera
(TI.Tc), where the system is disordered to zero tempera
where the noise can be set to zero (hW 50W ). It is believed that
our final results are independent of the exact nature of
initial state, provided it is a disordered state.

It is well established that for late times following
quench from the disordered to the ordered phase the dyn
ics obey scaling and the system can be described in term
a single growing lengthL(t), which is characteristic of the
e
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spacing between defects. In this scaling regime the ord
parameter correlation function has a universal equal-t
scaling form

C~12![^cW ~1!•cW ~2!&5c0
2F~x!, ~6!

wherec0 is the magnitudec5ucW u of the order parameter in
the ordered phase. Here we use the shorthand notation w
1 denotes (r1 ,t1). The scaled lengthx is defined as
xW5(rW12rW2)/L(t), where L(t);t1/2 for the nonconserved
models considered here.

In previous work on the order parameter scaling funct
it was important to make a mapping of the order parametecW

onto an auxiliary fieldmW with the key requirement thataway
from defect cores

cW 5c0m̂ ~7!

for the lowest-energy defects having unit topological char
Physically, one expects thatnear the defect cores

cW 5amW 1b~mW !2mW 1••• ~8!

for charge61 defects wherea and b are constants. In the
theory for the order-parameter correlations it is property~7!
that is important. In the theory of defect motion, as presen
here, it is property~8! that is important. In this paper only
property ~8! enters into the analysis since we always wo
near the defect cores. To complete the definition of
model one must specify the form of the probability distrib
tion for the auxiliary fieldmW . The simplest choice is a Gaus
ian probability distribution formW with

^mn~1!mn8~2!&5dnn8C0~12!. ~9!

The system is assumed to be statistically isotropic and
mogeneous soC0(12) is invariant under interchange of it
spatial indices. In the scaling regime at equal tim
(t15t25t) we introduce the auxiliary field autocorrelatio
function mentioned in the Introduction,

f ~x!5C0~rW1t,rW2t !/S0~ t !, ~10!

and S0(t)5C0(11) grows asL2(t) with time after the
quench.

III. TOPOLOGICAL DEFECTS

A. Densities

It has been emphasized in Ref.@7# that the signed or
charged point (n5d) defect density can be written in th
form

r~R,t !5d„cW ~R,t !…D~RW ,t !, ~11!

where the Jacobian obtained with the change of variab
from the set of vortex positions to the zeros of the fieldcW is
defined by
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2760 56GENE F. MAZENKO
D~R,t !5
1

n!
em1 ,m2 , . . . ,mn

en1 ,n2 , . . . ,nn
¹m1

cn1

3¹m2
cn2

•••¹mn
cnn

, ~12!

whereem1 ,m2 , . . . ,mn
is then-dimensional fully antisymmetric

tensor and summation over repeated indices is implied.
key point is that the zeros of the order parametercW locate the
positions of the vortices. The unsigned densityn(R,t) is
given by

n~R,t !5d„cW ~R,t !…uD~RW ,t !u. ~13!

The charged vortex correlation function is given by

Crr~R,t !5^r~R,t !r~0,t !&, ~14!

while the unsigned vortex correlation function is given by

Cnn~R,t !5^n~R,t !n~0,t !&. ~15!

It is shown in Ref.@5# that the vortex-vortex and vortex
antivortex correlation functions can be expressed in term
Crr andCnn . Crr was evaluated in Ref.@7# using the Gauss
ian closure approximation. As shown in Ref.@5#, the evalu-
ation of Cnn in this same approximation is technically muc
more difficult than the calculation ofCrr because of the
absolute value sign in the definition of the unsigned def
densityn.

B. Conservation of topological charge

It was shown in Ref.@6# that the charged vortex densit
satisfies the continuity equation

]r

]t
5¹b@d~cW !Jb

~K !#, ~16!

where

Ja
~K !5

1

~n21!!
ea,m2 , . . . ,mn

en1 ,n2 , . . . ,nn
Kn1

3¹m2
cn2

•••¹mn
cnn

. ~17!

A key point here is thatJb
(K) is multiplied by the vortex

locating d function. This means that one can replaceKW in
JW (K) by the part ofKW that does not vanish ascW→0. Thus, in
the case of a nonconserved order parameter one can re
Jb

(K) in the continuity equation by

Jb
~2!5

Gc

~n21!!
eb,m2 , . . . ,mn

en1 ,n2 , . . . ,nn
¹2cn1

3¹m2
cn2

•••¹mn
cnn

. ~18!

Because of the standard form of the continuity equation~16!,
it is clear that one can identify the vortex velocity field as

va52
Ja

~2!

D . ~19!
e

of

t

ace

This form for the velocity field is used inside expressio
multiplied by the vortex locatingd function.

C. Use of topological charge conservation to determine
the auxiliary field correlation function

In previous work@17,18# a rather successful scheme h
been developed for evaluating the order-parameter corr
tion functionF(x) and in turn the auxiliary field correlation
function f (x). As indicated in the Introduction, this leads
the problem that the auxiliary field correlation function
rendered nonanalytic as a function ofx for smallx. Mazenko
and Wickham@14# have shown recently that this proble
can be addressed in a different way. Rather than using
order-parameter equation of motion to determine ord
parameter correlation function they used the continuity eq
tion for topological charge to determine the auxiliary fie
correlation function. As in the rest of this paper, we use
fact that in quantities such asr andvW , we can replacecW→mW
everywhere. Then we can determinef (x) by satisfying

]

]t
^r~1!r~2!&5¹~1!

b ^d„cW ~1!…Jb
~2!~1!r~2!&

1¹~2!
b ^r~1!d„cW ~2!…Jb

~2!~2!& ~20!

under the assumption thatmW is a Gaussian field. The calcu
lation of the left-hand side of Eq.~20! amounts to the evalu
ation ofCrr . This calculation was carried out in Ref.@7# and
is straightforward sinceCrr factorizes into a product o
Gaussian averages that can be evaluated using stan
methods. The calculation of the average overJb

(2) can be
organized in a similar fashion. In the scaling regime, after
impressive set of cancellations, one finds the rather sim
result that

2mx f85¹2f 1n
S~2!

s
f , ~21!

where

S~2!5
1

n2
^~¹mW !2&, ~22!

S05sL2, ~23!

and we introduce the constant

m5
LL̇

2Gc
. ~24!

This equation forf is linear and has the simple solution o
the OJK form

f 5e2~m/2!x2
, ~25!

with the conditions

n
S~2!

s
5~2¹2f !ux505nm. ~26!
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56 2761VORTEX VELOCITY PAIR CORRELATIONS
For simplicity we setm51, which amounts to choosin
L(t)52AGct and results in the result forf given by Eq.~3!.

D. Vortex velocities

As an important application of the result~19! for the vor-
tex velocity fieldvW consider the velocity probability distribu
tion function defined by

n0P~vW 1![^nd~vW 12vW !&, ~27!

wherevW 1 is a reference velocity,vW is given by Eq.~19!, n is
the unsigned defect density, andn05^n&. P@vW 1# was found
in Ref. @6# to be given by

P~vW 1!5

GS n

2
11D

~p v̄ 2!n/2

1

@11~vW 1!2/ v̄ 2#~n12!/2
, ~28!

where the characteristic velocityv̄ is defined by

v̄ 25~Gc!2
S̄4

S~2!
, ~29!

whereS(2) is given by Eq.~22! and

S̄45
1

n
^~¹2mW !2&2

~nS~2!!2

S0
. ~30!

Using the OJK form for f (x), we obtain
S(2)5s, S̄45ds/Gct, and v̄ 25dGc/t.

IV. CALCULATION OF THE TWO-VORTEX VELOCITY
PROBABILITY DISTRIBUTION

A. General development

The main quantity of interest in this paper is the tw
velocity correlation function defined by

CnnP@vW 1 ,vW 2#5^n~1!d„vW 12vW ~1!…n~2!d„vW 22vW ~2!…&,
~31!

where vW 1 and vW 2 are external labels while thevW ( i ), for
i 51,2, is expressed in terms of the order-parameter fi
c( i ) via Eq. ~19!. CnnP@vW 1 ,vW 2# is normalized such that th
integrals overvW 1 and vW 2 give the unsigned defect densi
correlation functionCnn , which was determined previousl
in Ref. @5#.

The first step in the evaluation ofP@vW 1 ,vW 2# is to notice
that we can replacecW by mW in the expressions for the un
signed vortex density and the velocity. Next we need to sh
that it can be expressed in terms of an average over a red
probability distribution. In the Appendix we introduce th
fields

Wi@j,bW #[d„mW ~ i !…d„bW ~ i !2¹ i
2mW ~ i !…

3 )
m,n51

n

d„jm
n ~ i !2¹m

~ i !mn~ i !…, ~32!

which have the normalization
ld

w
ed

E dnb~ i ! )
m,n51

n

djm
n ~ i !Wi@j,bW #5d„mW ~ i !…. ~33!

Using this result, we can insert the factors ofW1W2 into the
expression forP@vW 1 ,vW 2# and use the properties of thed
function to replace all gradients and Laplacians ofmW with the
associated values constrained by the multiplyingd function
to obtain

CnnP@vW 1 ,vW 2#5E )
i 51

2 Fdnb~ i ! )
m,n51

n

djm
n ~ i !uD„j~ i !…u

3d~vW i2vW „j~ i !,bW ~ i !…!GG2~j,bW !,

where

G2~j,bW ![^W1@j,bW #W2@j,bW #&, ~34!

D~j!5
1

n!
em1 ,m2 , . . . ,mn

en1 ,n2 , . . . ,nn
jm1

n1 jm2

n2
•••jmn

nn ,

~35!

va„j~ i !,bW ~ i !…52
Ja

~2!
„j~ i !,bW ~ i !…

D„j~ i !…
, ~36!

with

Ja
~2!

„j~ i !,bW ~ i !…5
Gc

~n21!!
ea,m2 , . . . ,mn

en1 ,n2
, . . . ,nn

3bn1
~ i !jm2

n2 ~ i !•••jmn

nn ~ i !. ~37!

The Gaussian average givingG2(j,bW ) is worked out explic-
itly in the Appendix. In the course of this calculation it
required that one make a change of variables fromjm

n ( i ) to a
new settm

n ( i ) given by

jm
n ~ i !5R̂m

b tb
n ~ i ! ~38!

andR̂m
b is an orthonormal matrix with the additional proper

that R̂m
(1)5R̂m , where R̂m is the unit vector pointing from

vortex 2 to vortex 1. Since det(R̂)51 the change of variable
from j to t is simple,

)
n,m, j

djm
n ~ j !5 )

n,m, j
dtm

n ~ j ! ~39!

and

D„j~ j !…5D„t~ j !…. ~40!

The one place in this change of variables where one m
show care is for the currentJW (2). We have
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Ja
~2!

„j~ i !,bW ~ i !…5
Gc

~n21!!
ea,m2 , . . . ,mn

en1 ,n2 , . . . ,nn
bn1

~ i !R̂m2

b2tb2

n2~ i !•••R̂mn

bntbn

nn~ i !

5
Gc

~n21!!
ea,m2 , . . . ,mn

R̂m2

b2, . . . ,R̂mn

bnen1 ,n2 , . . . ,nn
bn1

~ i !tb2

n2~ i !, . . . ,tbn

nn~ i !. ~41!

Clearly, if we multiply this expression byR̂a
b1 and sum overa we obtain

R̂a
b1Ja

~2!
„j~ i !,bW ~ i !…5

Gc

~n21!!
R̂a

b1ea,m2 , . . . ,mn
R̂m2

b2, . . . ,R̂mn

bnen1 ,n2 , . . . ,nn
bn1

~ i !tb2

n2~ i !, . . . ,tbn

nn~ i !

5
Gc

~n21!!
~detR̂!eb1 ,b2 , . . . ,bn

en1 ,n2 , . . . ,nn
bn1

~ i !tb2

n2~ i !, . . . ,tbn

nn~ i !5Ja
~2!

„t~ i !,bW ~ i !…. ~42!
io
t

x

Multiplying by R̂m
b1 , summing overb1, and using the ortho-

normality of the matrixR̂ gives

Jm
~2!

„j~ i !,bW ~ i !…5R̂m
b1Jb1

~2!
„t~ i !,bW ~ i !…. ~43!

Because of the rotational invariance of thed-dimensionald
function we have

d~vW i2vW „j~ i !,bW ~ i !…!5d~uW ~ i !2vW „t~ i !,bW ~ i !…!, ~44!

where

u~ i !m5R̂b
mv i ,b . ~45!

Thus them51 component ofum is the longitudinal compo-
nent alongR̂. We then have that

CnnP@vW 1 ,vW 2#5E )
i 51

2 Fdnb~ i ! )
m,n51

n

dtm
n ~ i !uD„t~ i !…u

3d~uW ~ i !2vW „t~ i !,bW ~ i !…!GG2~ t,bW !. ~46!

The next step in the analysis is to perform the integrat
over thebW variables. Toward this end we use the represen
tion

d~uW ~ i !2vW „t~ i !,bW ~ i !…!5E dnz~ i !

~2p!n
e2 iuW ~ i !•zW~ i !eivW „t~ i !,bW ~ i !…•zW~ i !

~47!

and we make explicit thebW ( i ) dependence by writing

vW „t~ i !,bW ~ i !…•zW~ i ![an~ i !bn~ i !, ~48!

where

an~ i !52
Gc

~n21!!

1

D„t~ i !…
za~ i !eam2•••mn

enn2•••nn

3tm2

n2 ~ i !•••tmn

nn ~ i !5za~ i !Nna~ i ! ~49!

and
n
a-

Nna~ i !52
Gc

~n21!!

1

D„t~ i !…
eam2•••mn

enn2•••nn

3tm2

n2 ~ i !•••tmn

nn ~ i !. ~50!

Next one must make thebW dependence ofG2(t,bW ) explicit.
We have from the Appendix that

G2~j,bW !5GT~ tT!GL~bW , tWL!. ~51!

The transverse part ofG2 does not depend onbW ( i ), while the
longitudinal contribution can be written as

GL~bW , tWL!5
1

~2p!3n

1

~detM !n/2

3expS 2
1

2 (
a,b51

6

hW a•hW b~M 21!abD , ~52!

where the matrixM is discussed in detail in the Appendi
and thehW a are defined by Eqs.~A47!–~A51!. Using the ex-
plicit expressions for thehW a we can write

(
a,b51

6

hW a•hW b~M 21!ab5Sb(
i

bW ~ i !212CbbW ~1!•bW ~2!

12(
i

bW ~ i !•SW ~ i !1SL
0(

i
tWL

2~ i !

12CL
0 tWL~1!• tWL~2!, ~53!

where we have defined

Sb5~M 21!335~M 21!44, ~54!

Cb5~M 21!345~M 21!43, ~55!

SW ~1!5~M 21!35tWL~1!1~M 21!36tWL~2!, ~56!

SW ~2!52~M 21!36tWL~1!2~M 21!35tWL~2!, ~57!

SL
05~M 21!555~M 21!66, ~58!
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CL
05~M 21!565~M 21!65. ~59!

The matrix inverseM 21 is also discussed in detail in th
Appendix. It is convenient to define

GL
0~bW , tWL!5

1

~2p!3n

1

~detM !n/2
expF2

1

2S SL
0(

i
tW L

2~ i !

12CL
0 tWL~1!• tWL~2! D G ~60!

and theb dependence is explicit when we write

G2~j,bW !5GT~ tT!GL
0~ tWL!expF2

1

2S Sb(
i

bW ~ i !2

12CbbW ~1!•bW ~2!12(
i

bW ~ i !•SW ~ i ! D G . ~61!

Putting this together we have

CnnP@vW 1 ,vW 2#5E )
i 51

2 F )
m,n51

n

dtm
n ~ i !

dnz~ i !

~2p!n
uD„t~ i !…uG

3GT~ tT!GL
0~ tWL!expS 2 i(

i
uW ~ i !•zW~ i ! D J0 ,

~62!

where thebW ( i ) integrations are isolated in

J05E )
i

dnb~ i !expS i(
i

bW ~ i !•@aW ~ i !1 iSW ~ i !# D
3expF2

1

2S Sb(
i

bW ~ i !212CbbW ~1!•bW ~2! D G . ~63!

This integration is of the standard Gaussian form. If we
fine

AW ~ i !5aW ~ i !1 iSW ~ i !, ~64!

then we have the result

J05~2p!nS gb

Sb
D n

expS 2
1

2

gb
2

Sb
QD , ~65!

where

Q5(
i 51

2

AW 2~ i !22 f bAW ~1!•AW ~2! ~66!

and

gb5~12 f b
2!21/2, ~67!

f b5Cb /Sb . ~68!

The next step is to do thezW( i ) integrations. We can highligh
the z dependence if we remember that

an~ i !5za~ i !Nna~ i !. ~69!
-

It is then a matter of straightforward algebra to show tha

Q52(
i

SW 2~ i !12 f bSW ~1!•SW ~2!

1
Sb

gb
2 (a,b

(
i , j

za~ i !Eab~ i j !zb~ j !, ~70!

where

Eab~ i j !5
gb

2

Sb
Vab~ i j !@d i j 2 f bd j ,i 11# ~71!

and

Vab~ i j !5(
n

Nna~ i !Nnb~ j !. ~72!

Here we have introduced the convenient notation that
index i is periodic, so that ifi 52, then i 1151. Putting
these results together we have

CnnP@vW 1 ,vW 2#5E )
i 51

2 F )
m,n51

n

dtm
n ~ i !uD„t~ i !…uG

3GT~ tT!GL
0~ tWL!~2p!nS gb

Sb
D n

3expF1

2

gb
2

Sb
S (

i
SW 2~ i !

22 f bSW ~1!•SW ~2! D GJ1 , ~73!

where thez integration is given explicitly by

J15E )
i 51

2 Fdnz~ i !

~2p!nGexpS 2 i(
i

UW ~ i !•zW~ i ! D
3expS 2

1

2 (
a,b

(
i , j

za~ i !Eab~ i j !zb~ j ! D , ~74!

where

UW i5uW ~ i !1dW ~ i ! ~75!

and

da~ i !5
gb

2

Sb
(
n51

n

Nna~ i !@Sn~ i !2 f bSn~ i 11!#. ~76!

J1 is again of the standard form for a Gaussian integral,

J15
1

~2p!n/2

1

AdetE
expF2

1

2
Ua~ i !~E21!ab~ i j !Ub~ j !G ,

~77!

where, again, we need the determinant and the inverse
matrix, in this caseE. Let us look at the inverse first. If we
note the important result~used in Ref.@6#!
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Nsa~ i !ta
n ~ i !52Gcdsn , ~78!

where we do not sum oni , then

Vab~ i j !tb
s~ j !52GcNas , ~79!

where we do not sum onj . These identities suggest that w
try a solution forE21 of the form

~E21!ab~ i j !5(
n

ta
n ~ i !ei j tb

n ~ j !, ~80!

with ei j to be determined. Inserting this ansatz into the eq
tion defining the inverse we easily find that

ei j 5
1

~Gc!2
@Sbd i j 1Cbd j ,i 11#. ~81!

In computing detE we use the fact that

detE5
1

det~E21!
~82!

and thatE21 can be written as the matrix product

~E21!ab~ i j !5 (
n,n8,k,l

ta
n ~ i !d ikekl dnn8d l j tb

n8~ j !, ~83!

so that

detE215detta
n ~ i !d ikdet~ekl !dnn8detd l j tb

n8~ j !

5D„t~1!…D„t~2!…~dete!nD„t~1!…D„t~2!… ~84!

and

dete5
1

~Gc!4
~Sb

22Cb
2!5

1

~Gc!4

Sb
2

gb
2

. ~85!

Pulling all of this together leads to the result

CnnP@vW 1 ,vW 2#5
1

~Gc!2nE F)
i 51

2

)
m,n51

n

dtm
n ~ i !D2

„t~ i !…G
3GT~ tT!GL

0~ tWL!expF1

2

gb
2

Sb
S (

i
SW 2~ i !

22 f bSW ~1!•SW ~2! D GexpF2
1

2 (
i , j ,a,b

Ua~ i !

3~E21!ab~ i j !Ub~ j !G ~86!

and the important point is that one does not have an abso
value sign left in the Jacobian factors. Turn next to the ar
ment of the exponential in the last line of Eq.~86!. After a
substantial amount of algebra we find
-

te
-

2
gb

2

Sb
F(

i
SW 2~ i !22 f bSW ~1!•SW ~2!G1 (

i , j ,a,b
Ua~ i !

3~E21!ab~ i j !Ub~ j !

5(
i , j
VW ~ i !•VW ~ j !ei j 2

2

Gc(i
VW ~ i !•SW ~ i !, ~87!

where

Vn~ i !5(
a

ua~ i !ta
n ~ i !. ~88!

Putting this together leads to

CnnP@vW 1 ,vW 2#5
1

~2p!3n

1

~Gc!2n

1

~detM !n/2S gT

2pST
D n~n21!

J2 ,

~89!

where the final integration is over the matricesta
b( i ):

J25E F)
i 51

2

)
m,n51

n

dtm
n ~ i !D2

„t~ i !…Ge2~1/2!A~ t !, ~90!

where

A~ t !5
gT

2

ST
(
m52

n

(
n51

n F(
i 51

2

@ tm
n ~ i !#222 f Ttm

n ~1!tm
n ~2!G

1SL
0(

i
tWL

2~ i !12CL
0 tWL~1!• tWL~2!1(

i , j
VW ~ i !•VW ~ j !ei j

2
2

Gc(i
VW ~ i !•SW ~ i !. ~91!

A(t) is clearly a quadratic form in the matrixtm
n ( i ). The

quantitiesST , f T , andgT govern the transverse modes a
are defined by Eqs.~A56!–~A59! in the Appendix. After
sufficient rearrangementA(t) can be written in the final form

A~ t !5 (
i , j ,a,b,n

ta
n ~ i !Wab~ i j !tb

n ~ j !, ~92!

where the matrixW plays a central role in the theory and
given by the manifestly symmetric form

Wab~ i j !5dabdi j
a 1ua~ i !V i j

~1!ub~ j !1ua~ i !V i j
~2!Lb~ j !

1La~ i !V i j
~2!ub~ j !, ~93!

where

di j
a 5d i j da1d i 11,jda

c , ~94!

da5da,LSL
01~12da,L!

gT
2

ST
, ~95!

da
c 5da,LCL

01~12da,L! f T

gT
2

ST
, ~96!
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V i j
~1!5d i j

Sb

~Gc!2
1d i 11,j

Cb

~Gc!2
, ~97!

V i j
~2!52d i j

~M 21!35

Gc
1d i 11,j

~M 21!36

Gc
, ~98!

and

La~ i !5da,Lh i , ~99!

where

h152h251. ~100!

The final integration over the matricesta
n ( i ) is not of the

standard form evaluated so far, but instead there is the p
nomial D2(1)D2(2) multiplying the Gaussian in the inte
grand. It is technically important that there are no absol
value signs left in this expression and the integral can
evaluated by introducing a fieldga

n ( i ) that couples tota
n ( i )

via

2
1

2
A~ t !→2

1

2
A~ t !1 (

a,n,i
ga

n ~ i !ta
n ~ i !. ~101!

If we consider

J2~g!5E F)
i 51

2

)
m,n51

n

dtm
n ~ i !D2

„t~ i !…G
3expS 2

1

2
A~ t !e(

a,n,i
ga

n
~ i !ta

n
~ i !D , ~102!

then any polynomial can be generated by taking derivati
with respect tog. Using the explicit expressions for th
D2

„t( i )… we have
le

or
ro
ly-

e
e

s

J2~g!5 (
m1•••mn51

n

em1•••mn

]

]gm1

1 ~1!
•••

]

]gmn

n ~1!

3 (
m18•••mn851

n

em
18•••m

n8
]

]gm
18

1
~1!

•••

]

]gm
n8

n
~1!

3 (
n1•••nn51

n

en1•••nn

]

]gn1

1 ~2!
•••

]

]gnn

n ~2!

3 (
n18•••nn851

n

en
18•••n

n8
]

]gn
18

1
~2!

•••

]

]gn
n8

n
~2!

J3~g!,

~103!

where

J3~g!5E F)
i 51

2

)
m,n51

n

dtm
n ~ i !GexpS 2

1

2
A~ t !e(

a,n,i
ga

n
~ i !ta

n
~ i !D .

~104!

J3(g) is now of the standard form and we have

J3~g!5
~2p!n2

~detW!n/2
expF1

2 (
i , j ,a,b,n

ga
n ~ i !Lab~ i j !gb

n ~ j !G ,
~105!

whereLab( i j ) is the matrix inverse ofW. It is then straight-
forward to take the derivatives with respect tog and then set
g to zero to obtain

J25
~2p!n2

~detW!n/2
J4 , ~106!

where
J45 (
m1•••mn51

n

em1•••mn (
m18•••mn851

n

em
18•••m

n8 (
n1•••nn51

n

en1•••nn (
n18•••nn851

n

en
18•••n

n8 )
s51

n

@Lmsm
s8
~11!Ln

s8ns
~22!

1Lmsn
s8
~12!Lm

s8ns
~12!1Lmsns

~12!Lm
s8n

s8
~12!#, ~107!
of
ble
and the final result is

CnnP@vW 1 ,vW 2#5
1

~2p!3n

1

~Gc!2n

1

~detM !n/2S gT

2pST
D n~n21!

3
~2p!n2

~detW!n/2
J4 . ~108!

Finally, all of the integrals have been evaluated. What is
is to evaluate the determinant and matrix inverse ofW.

B. Large-x limit

As a check on the preceding analysis it is useful to w
out the large-scaled distance limit where we expect the p
ft

k
b-

ability distribution to factorize into the product for each
the tagged vortices. In this limit, using the results from Ta
I, we find that the matrices enteringW are in a diagonal form

di j
a 5Dd i j , ~109!

where

D5
1

s
, ~110!

V i j
~1!5

L2

2ds~Gc!2
d i j , ~111!
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and

V i j
~2!50. ~112!

The matrixW can then be written in the partially diagon
form

Wab~ i j !5d i j @dabD1 ūa~ i ! ūb~ i !#, ~113!

where

ūa~ i !5
Lua~ i !

GcA2ns
. ~114!

Notice that there is no longer a difference between the l
gitudinal and transverse directions as expected. The inv
matrix L then satisfies the equation

DLab~ i j !1 ūa~ i !(
m

ūm~ i !Lmb~ i j !5dabd i j . ~115!

This equation is in the form of a trap that can first be solv
to obtain

(
m

ūm~ i !Lmb~ i j !5d i j

ūb~ i !/D

11(
m

ūm
2 ~ i !/D

~116!

and the full inverse is given by

Lab~ i j !5d i jS D21dab2
ūa~ i ! ūb~ i !

D2F11(
m

ūm
2 ~ i !/DG D .

~117!

With these results it is easy to see that the quantityJ4 can be
written in the simple form

J45~n! !2detL~11!detL~22!, ~118!

detW5detW~11!detW~22!, ~119!

and

TABLE I. Small-x ~left! and large-x values for various quanti-
ties ~far left! defined in the text.

kE
(1) 2x 0

kE
(2) 16 2n

kE
(0) x2 1

kO
(0) x4

12
0

kO
(1) 2

x3

2
22n

kO
(2) 22x4 1

DE 16s3x2 4ns3

DO s3 x8

48
ns3

detM s6x10

3
4n2s6
-
se

d

detL~ i i !5
1

detW~ i i !
. ~120!

It is then easy to see that

detW@ i i #5Dn@11v i
2/ v̄ 2#, ~121!

where v̄ 2 is given by Eq.~29!. If we then carefully keep
track of all the factors we see that Eq.~108! reduces to

lim
x→`

CnnP@vW 1 ,vW 2#5n0P@vW 1#n0P@vW 2#, ~122!

where n0P@vW i # is given by Eq.~30! in Ref. @6# and, after
proper normalization, leads to the expression for the sing
vortex velocity probability distribution given by Eq.~28!.

C. n5d52 case

The general expression forCnnP@vW 1 ,vW 2# is complicated.
Let us restrict ourselves here to the case ofn5d52 where
detW andJ4 can be evaluated explicitly. Let us define

detA~ i j !5A11~ i j !A22~ i j !2A12~ i j !A21~ i j !, ~123!

where the matrixAab( i j ) is eitherW or its inverseL. We
can also define

QA5@A11~22!A21~21!2A21~22!A11~21!#@A12~11!A22~12!

2A22~11!A12~12!#2@A12~22!A21~21!

2A22~22!A11~21!#@A12~11!A21~12!2A22~11!A11~12!#

2@A11~22!A22~21!2A21~22!A12~21!#@A11~11!A22~12!

2A21~11!A12~12!#1@A12~22!A22~21!

2A22~22!A12~21!#@A11~11!A21~12!

2A21~11!A11~12!#. ~124!

In terms of these quantities we have

detW5detW~11!detW~22!1detW~12!detW~21!1QW

~125!

and

J454@detL~11!detL~22!13 detL~12!detL~21!1QL#.

~126!

It is clear that the last nontrivial step before evaluati
CnnP@vW 1 ,vW 2# is to determineLab( i j ). This will be carried
out in general in Sec. IV E; however, most of the importa
physics can be extracted in the problem by considering
simple case where the transverse velocities are both zer
this case one can make substantial analytical progress.

D. Zero transverse velocities

Before tackling the complete determination ofP@vW 1 ,vW 1#
it is very instructive to study the much simpler case whe
the transverse velocities are set to zero. This case is of in
est not only because it is simple but also because it is
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most probable situation. The most likely situation is th
each of the two tagged vortices will have zero transve
velocity.

If the transverse velocities are zero then the problem s
plifies since the matrixW reduces to the diagonal form

Wab~ i j !5dabDi j
a , ~127!

where

Di j
a 5di j

a 1da,L@u~ i !V i j
~1!u~ j !1u~ i !V i j

~2!h j1h iV i j
~2!u~ j !#

~128!

andu( i )5uL( i ). Clearly, the longitudinal and transverse d
grees of freedom are uncoupled and we have after some
nipulations

Di j
T 5dT@d i j 1 f Td j ,i 11#, ~129!

while

Di j
L 5aid i j 1bd j ,i 11 , ~130!

where

ai5~M 21!551~M 21!33ū~ i !222h i~M 21!35ū~ i !,
~131!

b5~M 21!561~M 21!34ū~1! ū~2!1~M 21!36@ ū~2!2 ū~1!#,

~132!

and

ū~ i !5
u~ i !

Gc
. ~133!

In this case we see thatW is a relatively simple matrix. We
need its determinant and then its inverse on the way to ev
ating the quantityJ4. The matrix ofW for generaln is sim-
ply given by

detW5~detDT!n21~detDL!, ~134!

where

detDT5~dT!2~12 f T
2!5

1

ST
22CT

2
~135!

and

detDL5a1a22b2. ~136!

The quantity detDL is key in the development and we sha
return to it soon. First we need to evaluate the inverse oW
to complete the calculation. In this case this involves
solution of the equation

(
k

Dik
a Lab~k j !5dabd i j , ~137!

which is easily found to be given by

Lab~ i j !5dab@da,LLL~ i j !1da,TLT~ i j !#, ~138!
t
e

-

a-

u-

e

where

LL~ i j !5
1

detDL
@ai 11d i j 2bd j ,i 11# ~139!

and

LT~ i j !5
1

detDT
dT@d i j 2 f Td j ,i 11#. ~140!

Using these results, one can work out the quantityJ4 for the
casen5d52 with the result

J454$detL~11!detL~22!13@detL~22!#2

2LL~22!LL~11!LT
2~12!2LT~22!LT~11!LL

2~12!%,

~141!

where we have used the fact that the matricesLL( i j ) and
LT( i j ) are symmetric. Putting in the explicit forms forL,
we obtain

J45
4

~detDT!2~detDL!2
@detDLdetDT12b2~dTf T!2#.

~142!

Putting all of this together forn5d52 and the transverse
velocities zero, we have

CnnP@vW 1 ,vW 2#5
4

~Gc!6

1

detMF 1

~detDL!2detDT
1

2b2CT
2

~detDL!3G .

~143!

Clearly, the next step is the explicit evaluation of detDL.
Using the expressions forai andb given by Eqs.~131! and
~132!, we obtain, after some algebra, that

detDL5
s4

DODE
F ḡ 01

ḡ 1

2
@ ũ~1!2 ũ~2!#

1 ḡ A@ ũ 2~1!1 ũ 2~2!#1 ḡ Bũ~1! ũ~2!

1
ḡ 3

2
ũ~1! ũ~2!@ ũ~1!2 ũ~2!#

1 ḡ 4ũ 2~1! ũ 2~2!G , ~144!

where the scaled longitudinal velocities are defined by

ũ~ i !5 ū~ i !L ~145!

and

ḡ 052kO
~2!kE

~2! , ~146!

ḡ 152@~12 f !kO
~1!kE

~2!1~11 f !kE
~1!kO

~2!#, ~147!

ḡ A5~12 f !
DE

8s3
1~11 f !

DO

2s3
1

ḡ 2

4
, ~148!
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ḡ B5~12 f !
DE

4s3
1~11 f !

DO

s3
2

ḡ 2

2
, ~149!

ḡ 25~12 f !kO
~0!kE

~2!2~11 f !kE
~0!kO

~2!24~12 f 2!kO
~1!kE

~1! ,
~150!

ḡ 352~12 f 2!@kO
~1!kE

~0!2kE
~1!kO

~0!#, ~151!

ḡ 45~12 f 2!kE
~0!kO

~0! , ~152!

where thek ’s are given as functions off by Eqs. ~A91!–
~A96! in the Appendix.DO andDE are given as functions o
f by Eqs.~A83! and ~A84! in the Appendix. Note the rela
tionship 2ḡ A2 ḡ B5 ḡ 2. Notice the crucial result that afte
rescaling the velocities by a factor ofL, the time dependenc
drops out of detDL. This will eventually lead to the resul
that scaling holds for the probability distribution at late tim
if we rescale velocities in this manner.

We also need to express the quantityb in terms of the
k ’s. It is convenient to write

b5bO1bE , ~153!

where

bO5
s2

4DO
$2kO

~2!2~12 f !kO
~0! ũ~1! ũ~2!1~12 f !kO

~1!

3@ ũ~2!2 ũ~1!#%, ~154!

bE5
s2

DE
$2kE

~2!1~11 f !kE
~0! ũ~1! ũ~2!1~11 f !kE

~1!

3@ ũ~2!2 ũ~1!#%. ~155!

The last ingredient needed to evaluate the probability dis
bution is

CT52
C08

R
52s

f 8~x!

x
5s f ~x!, ~156!

using the OJK form forf (x) in the last step.
Let us look first at the small-x limit. Since the OJK form

for f (x) is easily expanded in a power series inx and we
can extract to leading order inx, ḡ 0532x4, ḡ 15224x5,

ḡ 25 26
3 x6, ḡ 352 4

3 x7, ḡ 45x8/12, ḡ A5 3
8 x2, andḡ B52ḡ A .

We also need

DE516x2s3, ~157!

DO5s3
x8

48
. ~158!

Notice that the ḡ A and ḡ B dominate the expression fo
detDL in the small-x limit and we can write to leading order
in x

detDL5
s4

DODE
$ ḡ 01 ḡ A@ ũ~1!1 ũ~2!#2% ~159!
i-

plus terms that are higher order inx. We can write this in the
more convenient form

detDL5
s4ḡ 0

DODE
@11V2/V0

2#, ~160!

where after some algebra we obtain

s4ḡ 0

DODE
5

96

s6x6
, ~161!

V5 ũ~1!1 ũ~2!, ~162!

and

V0
25

ḡ 0

ḡ A

58x2. ~163!

Similarly, we find for smallx thatb is dominated byb0 and
given to leading order inx by b52384/x4s. We also need
CT5s to leading order inx. The probability distribution is
dominated in the small-x limit by the term proportional to
b2. The other term is down by a factor ofx4. Putting all of
this together, we obtain

CnnP@vW 1 ,vW 2#5S s2

GcD 6 1

~11V2/V0
2!3

. ~164!

Then, asx→0 we find, with increasing probability, that

V5 ũ~1!1 ũ~2!50. ~165!

This is just the physical statement that there is very l
probability that there is a nonzero momentum of the cen
of mass~c.m.! of the two tagged vortices. Thus all of th
action isin the center of mass where we can set

ũ~2!52 ũ~1![ ũ . ~166!

If we return to the probability distribution for the cas
where the c.m. momentum is zero, then

detDL5
s4

DODE
@ ḡ 01 ḡ 1ũ1 ḡ 2ũ 21 ḡ 3ũ 31 ḡ 4ũ4#

~167!

and

bO5
s2

4DO
@2kO

~2!1~12 f !kO
~0! ũ 212~12 f !kO

~1! ũ#,

~168!

bE5
s2

DE
@2kE

~2!2~11 f !kE
~0! ũ 212~11 f !kE

~1! ũ#.

~169!

In the small-x limit these reduce to

b5bO1bE52
384

x4s
f b , ~170!
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where

f b512
u

4
1

u2

48
, ~171!

det~DL!5
96

s6x6
f L , ~172!

with

f L512
3

4
u1

13

48
u22

1

24
u31

1

384
u4, ~173!

and the scaled velocity is given by

u5 ũx. ~174!

The probability distribution is given in thex→0 limit by

CnnP@vW 1 ,vW 2#5S s2

GcD 6 f b
2

f L
3

. ~175!

A key conclusion we can draw at this point is that it is on
the combinationu5 ũx that enters the probability distribu
tion with high probability asx→0. Thus the relative velocity
increases as 1/x asx→0. We plotf b

2/ f L
3 as a function ofu in

Fig. 2. We note that the most probable values of the rela
velocity as a function ofx for small x are given by

vL[
Gc

L

k

x
5

Gck

R
, ~176!

with k52.19 a pure number. This is the result quoted in
Introduction.

If we then plot the two-vortex velocity probability distri
bution function for zero transverse velocities in the c.m.
generalx as shown in Figs. 3 and 4, we obtain the mo
probable relative velocities as a function ofx as shown in

FIG. 3. Plot of unnormalized probabilityP@vW 1 ,vW 2# for different
values of the scaled distancex between the two tagged vortice
versus the scaled velocity in the center of ma

ũ5 x̂•uW (2)L/Gc52 x̂•uW (1)L/Gc. The normalization changes wit
x so the different heights of the curves are not significant in t
plot. The curves, as one moves from left to right, are labeled
x53.0, 2.0, 1.0, and 0.7, respectively.
e

e

r
t

Fig. 1. The interpretation that this is the interaction betwe
vortices and antivortices holds only out to modest values ox
where the population of same-signed vortices begins to
pear~see Ref.@5#!.

E. General evaluation

The complete determination of the two-vortex veloc
probability distribution as a general function ofvW 1 and vW 2
can be carried out in then5d52 case if one can invert the
matrix Wab( i j ) to obtain its inverseLab( i j ) defined by

(
m,k

Wam~ ik !Lmb~k j !5dabd i j . ~177!

This inversion is a quite unpleasant task if one heads in
wrong direction. It is useful in order to make the develo
ment more transparent to introduce a mixed operator n
tion whereWab is an operator in the space associated w
the indicesi and j ,

Wab~ i j !5^ i uWabu j &. ~178!

Then the matrixWab is given by

Wab5dabda1uaV~1!ub1uaV~2!Lb1LaV~2!ub ,
~179!

whereua andLa are diagonal operators

^ i uuau j &5ua~ i !d i j , ~180!

^ i uLau j &5La~ i !d i j . ~181!

The key idea is that if we can writeWab in the form

Wab5dabDa1PaP̃b , ~182!

whereP̃b is the transpose ofPa , then we can carry out the
inversion straight away. Let us first show this and then ret
to show thatW can be written in the assumed form.

We want to invert the equation

(
m

WamLmb5dab . ~183!

s

s
y

FIG. 4. Same as Fig. 3, exceptx50.7, 0.4, 0.2, and 0.1 as on
moves from left to right.
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2770 56GENE F. MAZENKO
Inserting the assumed form~182! for W we obtain

DaLab1Pa(
m

P̃mLmb5dab . ~184!

Multiplying from the left by the matrix inverse ofDa , this
becomes

Lab1Da
21Pa(

m
P̃mLmb5Da

21dab . ~185!

This equation is then in the form of a trap for the quant
(mP̃mLmb . Multiplying Eq. ~185! by P̃a and summing over
a, we obtain a closed equation for(mP̃mLmb , which has the
solution

(
m

P̃mLmb5@11Q#21(
m

P̃bDb
21 , ~186!

where the 232 symmetric matrixQ is defined by

Q5(
m

P̃mDm
21Pm . ~187!

This leads directly to the final result

Lab5Da
21dab2Da

21Pa@11Q#21P̃bDb
21 , ~188!

which is clearly symmetric. This gives a practical express
for the inverse once one has identified the matricesD
andP.

The key observation that allows one to writeW in the
desired form given by Eq.~182! is that the matrixV i j

(1) can
be factorized in the form

V i j
~1!5(

k
v ikṽk j , ~189!

where

v i j 5v0d i j 1v1d j ,i 11 ~190!

and

v05
ASb

2Gc
@A11 f b1A12 f b#, ~191!

v15
ASb

2Gc
@A11 f b2A12 f b#. ~192!

Using this factorization result, it is then easy to show thatW
can be written in the form~182! with

Di j
a 5di j

a 2da,L(
k

CL~ ik !C̃L~k j !, ~193!

Pa~ i j !5ua~ i !v i j 1Ca~ i j !, ~194!

with

Ca~ i j !5La~ i !(
k

V ik
~2!vk j

21 . ~195!
n

Combining these results, one has an explicit expression
the two-vortex velocity probability distribution for arbitrar
velocities. The major qualitative feature of including th
transverse velocities is to allow one to look at the widths
the distributions in the transverse directions since we find
most probable configurations are those where the transv
velocities of both vortices are zero. These widths turn ou
be comparable to those associated with the longitud
modes.

V. DISCUSSION

In the analysis here we have looked at the correlat
between vortices regardless of their signs. At short rela
distances, where it is unlikely to have two vortices of t
same sign, one can interpret the results in terms of vor
antivortex dynamics. It is clear that one can go further,
discussed by Mazenko and Wickham@5#, and separate the
probability distribution into that for vortex-vortex an
vortex-antivortex pairs. The key idea, which is essentia
equivalent to that used in the case of spatial correlations

that a factor ofP1(1)[ 1
2 @11sgnD(1)# restricts one to the

positive-charge vortex sector, while P2(1)5 1
2@1

2sgnD~1!# restricts one to the negative-charge antivort
sector. Thus the probability for vortex-vortex correlations

CvvPvv~12!5^n~1!d„vW 12vW ~1!…P1~1!n~2!

3d„vW 22vW ~2!…P1~2!&. ~196!

The vortex-antivortex contribution is given by

CavPav~12!5^n~1!d„vW 12vW ~1!…P2~1!n~2!

3d„vW 22vW ~2!…P1~2!&. ~197!

These quantities can be multiplied out and, and after us
symmetry to show that the correlation between the sig
and unsigned quantities is zero, can be expressed in term
the probability distribution determined in this paper and

CrrPrr~12!5^r~1!d„vW 12vW ~1!…r~2!d„vW 22vW ~2!…&,
~198!

which has not yet been computed. It is expected thatPrr(12)
will be difficult to determine because of the addition facto
of the sgnD. The analysis will be essentially identical i
structure up to Eq.~125! with the expression forJ2 showing
the replacement

D2
„t~ i !…→D„t~ i !…uD„t~ i !…u. ~199!

The resulting integral forJ2 cannot then be represented
the product form given by Eq.~103!. This remains a problem
to be solved.

In principle, Eq. ~108! gives an expression that can b
integrated over all velocities to giveCu and determine the
overall normalization. It is not clear how to do this analy
cally since the velocities appear in a complicated fashion
detW andJ4. A numerical determination is quite feasible.
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VI. CONCLUSION

In this paper we have shown how one can make prog
in an analysis of the dynamics of point vortices in the cont
of phase ordering kinetics. The results include the effect
other vortices and order-parameter fluctuations on the
namics of the tagged vortices. The results appear comple
physical and the determination of the relative velocity
short distances appears to be a useful result. The me
used here appears to generalize easily to the case of s
defects. This will be the subject of subsequent work.
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APPENDIX: GAUSSIAN AVERAGE

In this Appendix we work out the Gaussian average

G2~j,bW !5^W1@j,bW #W2@j,bW #&, ~A1!

where theW’s are defined by

Wi@j,bW #[d„mW ~ i !…d„bW ~ i !2¹ i
2mW ~ i !…

3 )
m,n51

n

d„jm
n ~ i !2¹m

~ i !mn~ i !…, ~A2!

where we have already assumed thatn5d in the product.
The first step in the evaluation ofG2 is to use the Fourier
representation for thed function to obtain

Wi@j,bW #5E dṼ@ i #eiqW i•mW ~ i !e2 isW i•[bW ~ i !2¹ i
2mW ~ i !]

3expS 2 i(
m,n

km
n ~ i !@jm

n ~ i !2¹mmn~ i !# D ,

~A3!

where we have defined

dṼ@ i #5
dnqi

~2p!n

dnsi

~2p!n )
m,n51

n Fdkm
n ~ i !

2p G . ~A4!

We can rewrite this in the more useful form

Wi@j,bW #5E dṼ@ i #expF2 i S sW i•bW ~ i !1 (
m,n51

n

km
n ~ i !jm

n ~ i !D G
3expS (

a51

n E d 1̄Hi
a~ 1̄ !ma~ 1̄ !D , ~A5!

where

E d 1̄5E dd r̄ 1d t̄ 1 , ~A6!
ss
t

of
y-
ly

s
od
ing

-
e
r

Hi
a~ 1̄ !5 i Fqi

a1si
a¹~ i !

2 1 (
m51

n

km
a~ i !¹~ i !

m Gd~ 1̄ i !, ~A7!

and¹ ( i )
m is themth component of the gradient acting onrW i .

The average of interest can then be written as

G2~j,bW !5E dṼ@1#dṼ@2#expF2 i(
i 51

2 S sW i•bW ~ i !

1 (
m,n51

n

km
n ~ i !jm

n ~ i !D G
3K expF(

i 51

2

(
a51

n E d 1̄Hi
a~ 1̄ !ma~ 1̄ !G L .

~A8!

The average is of the standard form for a Gaussian ave
with the result

K expF(
i 51

2

(
a51

n E d 1̄Hi
a~ 1̄ !ma~ 1̄ !G L 5e2~1/2!A0,

~A9!

where

A052 (
i , j 51

2

(
a,b51

n E d 1̄E d 2̄Hi
a~ 1̄ !H j

b~ 2̄ !C0~ 1̄ , 2̄ !da,b

~A10!

and we have used

^ma~ 1̄ !mb~ 2̄ !&5C0~ 1̄ , 2̄ !da,b . ~A11!

Inserting the expression forH into A0 we need the defini-
tions

C0~ i i ![S0 , ~A12!

@¹~ i !
2 C0~ i j !#u i 5 j[2nS~2!, ~A13!

@¹~ j !
2 ¹~ i !

2 C0~ i j !#u i 5 j[S~4!, ~A14!

@¹~ j !
n ¹~ i !

m C0~ i j !#u i 5 j5dmnS~2!. ~A15!

Using the fact thatC0(12) depends only on the magnitude
RW 5rW12rW2, we convert all derivatives to those with respect
RW :

¹~1!
m C0~12!5C08R̂m , ~A16!

¹~2!
m C0~12!52C08R̂m , ~A17!

where the prime indicates a derivative with respect toR.
Going further, fori 51 and 2,

¹~ i !
2 C0~12!5¹R

2C0~R!5C091
~d21!

R
C08 , ~A18!
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¹~1!
m ¹~2!

n C0~12!52C09R̂mR̂n2
C08

R
~dmn2R̂mR̂n!,

~A19!

¹~2!
2 ¹~2!

m C0~12!52pR̂m , ~A20!

¹~1!
2 ¹~1!

m C0~12!5pR̂m , ~A21!

where

p5C0-1
~d21!

R S C092
C08

R D 5@¹R
2C0~R!#8. ~A22!

We see that it is then natural to use the coordinate sys
parallel and orthogonal toRW . Indeed, we can introduce th
orthonormal setR̂b

a where

(
a51

n

R̂a
mR̂a

n 5dmn , ~A23!

(
m51

n

R̂a
mR̂b

m5dab . ~A24!

The only other thing we need to know about this set is th

R̂b
15R̂b . ~A25!

Next we define

Wb
a~ i !5 (

m51

n

R̂m
bkm

a~ i !, ~A26!

which can be inverted to give

km
a~ i !5 (

b51

n

R̂m
bWb

a~ i !. ~A27!

In terms of this new set of variables,

(
i ,m,n

@km
n ~ i !#25 (

i ,m,n
S (

b
R̂m

bWb
n ~ i ! D S (

s
R̂m

sWs
n ~ i ! D

5 (
i ,b,n

@Wb
n ~ i !#2. ~A28!

We then have

A05A~qW !1A~sW !1A~WW L!1AT~W!1Ac~qW ,sW,WW L!,
~A29!

where

A~qW !5S0(
i 51

2

qW i
212C0qW 1•qW 2 , ~A30!

A~sW !5S~4!(
i 51

2

sW i
212~¹4C0!sW1•sW2 , ~A31!
m

t

AL~WW !5S~2!(
i 51

2

WW L~ i !222~C09!WW L~1!•WW L~2!,

~A32!

where the longitudinal part of the tensorW is defined by

WL
a~ i !5 (

m51

n

R̂m
1 km

a~ i !. ~A33!

The transversecontribution toA0 is given by

AT~W!5 (
m52

n

(
n51

n FS~2!(
i 51

2

@Wm
n ~ i !#2

22~C08/R!Wm
n ~1!Wm

n ~2!G . ~A34!

The termcoupling the setqW ,sW,WW L is given by

Ac~qW ,sW,WW L!522nS~2!(
i 51

2

qW i•sW i12~qW 1•sW21qW 2•sW1!¹2C0

22~psW11C08qW 1!•WW L~2!

12~psW21C08qW 2!•WW L~1!. ~A35!

Notice that thetransversemodes decouple from the longitu
dinal set coupled inAc .

It will be very useful for us to rewriteA0 as a sum of a
transverse part, already written down, and a longitudinal p
that is a quadratic form in the vector

fW a5@qW ~1!,qW ~2!,sW~1!,sW~2!,WW L~1!,WW L~2!#, ~A36!

where we assume that the subscripta runs from 1 to 6. We
have then

AL5(
a,b

MabfW a•fW b , ~A37!

where the matrixM is given explicitly by

M5S S0 C0 u1 u2 0 u4

C0 S0 u2 u1 2u4 0

u1 u2 S~4! C4 0 u3

u2 u1 C4 S~4! 2u3 0

0 2u4 0 2u3 S~2! C2

u4 0 u3 0 C2 S~2!

D .

~A38!

Various quantities entering the matrixM are defined by

C45¹4C05
s

L2
¹x

4f ~x!, ~A39!

S~4!5¹4C0uR5058
s

L2
, ~A40!
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C252C0952s f 9, ~A41!

u152nS~2!52ns, ~A42!

u25¹2C05s¹x
2f ~x!, ~A43!

u352p52
s

L
@¹x

2f ~x!#8, ~A44!

u452C0852Ls f 8~x!. ~A45!

The complete change of variable fromk to W in Eq.
~A26! requires noting that the Jacobian taking one fromk to
W is one. The argument of the exponential outside the a
age in Eq.~A26! can also be written in terms of the setfW a
and the transverse part ofW. Then one has

(
i 51

2 F (
m,n51

n

km
n ~ i !jm

n ~ i !1sW i•bW ~ i !G
5 (

a51

6

hW a•fW a1(
i 51

2

(
n51

n

(
m52

n

Wm
n ~ i !tm

n ~ i !, ~A46!

where

hW 15hW 250, ~A47!

hW 35bW ~1!, ~A48!

hW 45bW ~2!, ~A49!

hW 55 tWL~1!, ~A50!

hW 65 tWL~2!, ~A51!

and

tm
n ~ i ![ (

b51

n

Rm
b~ i !jb

n ~ i !. ~A52!

We then have the result thatG2 factorizes into longitudinal
and transverse components:

G2~j,bW !5GT~ tT!GL~bW , tWL!. ~A53!

First consider the transverse contribution given by

GT~ tT!5E F)
i 51

2

)
n51

n

)
m52

n dWm
n ~ i !

2p GexpF2
1

2
AT~WT!

2 i(
i 51

2

(
n51

n

(
m52

n

tm
n ~ i !Wm

n ~ i !G . ~A54!

This is a standard Gaussian integral that can be evalu
with the results
r-

ed

GT~ tT!5S gT

2pST
D n~n21!

exp2
gT

2

2ST
F (

m52

n

(
n51

n S (
i 51

2

@ tm
n ~ i !#2

22 f Ttm
n ~1!tm

n ~2!D G , ~A55!

where

ST5S~2!, ~A56!

CT52
C08

R
, ~A57!

f T5
CT

ST
, ~A58!

and

gT
25~12 f T

2!21. ~A59!

The longitudinal contribution toG2 is also a standard
Gaussian integral:

GL~bW , tWL!5E )
i 51

2 F )
a51

6
dnfa~ i !

~2p!n GexpS 2 i (
a51

6

hW a•fW aD
3expS 2

1

2 (
a,b51

6

MabfW a•fW bD
5

1

~2p!3n

1

~detM !n/2

3expS 2
1

2 (
a,b51

6

hW a•hW b~M 21!abD . ~A60!

Thus the determination ofG2 reduces to an evaluation of th
inverse and determinant of the matrixM given above. If we
multiply M from left and right by the matrix

Q5S 1 1
2 0 0 0 0

21 1
2 0 0 0 0

0 0 1
2 1 0 0

0 0 2 1
2 1 0 0

0 0 0 0 1
2 21

0 0 0 0 1
2 1

D , ~A61!

then the new matrix

M̃ab5(
m,n

QmaQnbMmn ~A62!

has the block diagonal form
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M̃5S 2~S02C0! 0 u12u2 0 u4 0

0 1
2 ~S01C0! 0 u11u2 0 u4

u12u2 0 1
2 ~S~4!2C4! 0 1

2 u3 0

0 u11u2 0 2~S~4!1C4! 0 2u3

u4 0 1
2 u3 0 1

2 ~S~2!1C2! 0

0 u4 0 2u3 0 2~S~2!2C2!

D . ~A63!
n

i-

of
of

te
It is easy to see that the inverse forM can be expressed i
terms of the inverse ofM̃ as

~M 21!mn5(
a,b

QmaQnb~M̃ 21!ab . ~A64!

SinceM̃ is block diagonal the evaluation of its determ
nant and inverse elements is straightforward. We find

detM̃5DODE , ~A65!

whereDO is the determinant of theodd part of the matrix
given by

S 2~S02C0! u12u2 u4

u12u2
1
2 ~S~4!2C4! 1

2 u3

u4
1
2 u3

1
2 ~S~2!1C2!

D ,

~A66!

so

2DO5~S02C0!@~S~4!2C4!~S~2!1C2!2u3
2#2~u12u2!

3@~u12u2!~S~2!1C2!2u3u4#1u4@u3~u12u2!

2u4~S~4!2C4!#. ~A67!

DE is the determinant of theevenpart of the matrix given by

S 1
2 ~S01C0! u11u2 u4

u11u2 2~S~4!1C4! 2u3

u4 2u3 2~S~2!2C2!
D ,

~A68!

where

DE/25~S01C0!@~S~4!1C4!~S~2!2C2!2u3
2#2~u11u2!

3@~u11u2!~S~2!2C2!2u3u4#1u4@u3~u11u2!

2u4~S~4!1C4!#. ~A69!

Since it is easy to show that detQ51 we obtain

detM̃5detQdetMdetQ5detM5DEDO . ~A70!

The needed inverses are given by
~M̃ 21!335
~S02C0!~S~2!1C2!2u4

2

DO
, ~A71!

~M̃ 21!355
~u12u2!u42~S02C0!u3

DO
, ~A72!

~M̃ 21!555
~S02C0!~S~4!2C4!2~u12u2!2

DO
, ~A73!

~M̃ 21!445
~S01C0!~S~2!2C2!2u4

2

DE
, ~A74!

~M̃ 21!465
~u11u2!u42~S01C0!u3

DE
, ~A75!

~M̃ 21!665
~S01C0!~S~4!1C4!2~u11u2!2

DE
. ~A76!

All odd-even inverse elements such as (M̃ 21)34 vanish and
the rest of the elements follow using the symmetry
(M̃ 21). One can then easily extract the inverse elements
(M 21):

~M 21!335~M 21!445
1
4 ~M̃ 21!331~M̃ 21!44, ~A77!

~M 21!555~M 21!665
1
4 ~M̃ 21!551~M̃ 21!66, ~A78!

~M 21!345~M̃ 21!442
1
4 ~M̃ 21!33, ~A79!

~M 21!3552~M 21!465
1
4 ~M̃ 21!352~M̃ 21!46,

~A80!

~M 21!3652~M 21!455
1
4 ~M̃ 21!351~M̃ 21!46,

~A81!

~M 21!565
1
4 ~M̃ 21!552~M̃ 21!66. ~A82!

In terms off and its derivatives we find that we can wri

DE52s3$kE
~0!kE

~2!2~11 f !@kE
~1!#2%, ~A83!

DO5 1
2 s3$2kO

~0!kO
~2!2~12 f !@kO

~1!#2%, ~A84!

DO~M̃ 21!335L2s2~12 f !kO
~0! , ~A85!

DO~M̃ 21!355Ls2~12 f !kO
~1! , ~A86!
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DO~M̃ 21!5552s2kO
~2! , ~A87!

DE~M̃ 21!445L2s2~11 f !kE
~0! , ~A88!

DE~M̃ 21!465Ls2~11 f !kE
~1! , ~A89!

DE~M̃ 21!665s2kE
~2! . ~A90!

These results give the explicitL dependences of the variou
matrix elements. Thek ’s are independent ofL and given by

kE
~1!5~¹2f !82

f 8~¹2f !1

11 f
, ~A91!

kE
~2!5~11 f !~¹4f !12@~¹2f !1#2, ~A92!
g

.

. D
kE
~0!5~ f 9!22

~ f 8!2

11 f
, ~A93!

kO
~1!5~¹2f !81

f 8~¹2f !2

12 f
, ~A94!

kO
~2!5~12 f !~¹4f !21@~¹2f !2#2, ~A95!

kO
~0!52~ f 9!12

~ f 8!2

12 f
, ~A96!

where we have introduced the notation

A65A~x!6A~0!. ~A97!
er-
ko,

the
,

.
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